Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Phần a)
\(\left\{\begin{matrix} x\sqrt{y}+y\sqrt{x}=30\\ x\sqrt{x}+y\sqrt{y}=35\end{matrix}\right.\) \(\Rightarrow \left\{\begin{matrix} \sqrt{xy}(\sqrt{x}+\sqrt{y})=30\\ (\sqrt{x}+\sqrt{y})(x-\sqrt{xy}+y)=35\end{matrix}\right.\)
Khi đó hpt trở thành:
Đặt \((\sqrt{xy}; \sqrt{x}+\sqrt{y})=(a,b)\)
HPT trở thành:
\(\left\{\begin{matrix} ab=30\\ b(b^2-3a)=35\end{matrix}\right.\) \(\Rightarrow \left\{\begin{matrix} ab=30\\ b^3=125\end{matrix}\right.\Rightarrow \left\{\begin{matrix} a=6\\ b=5\end{matrix}\right.\)
Vậy \(\sqrt{xy}=6; \sqrt{x}+\sqrt{y}=5\). Theo định lý Viete đảo thì \(\sqrt{x}; \sqrt{y}\) là nghiệm của pt:
\(T^2-5T+6=0\Rightarrow (\sqrt{x}; \sqrt{y})=(2,3)\) và hoán vị
\(\Rightarrow (x,y)=(4,9)\) và hoán vị
b)
HPT \(\Leftrightarrow \left\{\begin{matrix} x+y+xy=2+3\sqrt{2}\\ (x+y)^2-2xy=6\end{matrix}\right.\)
Đặt \((x+y,xy)=(a,b).\) Khi đó hpt trở thành:
\(\left\{\begin{matrix} a+b=2+3\sqrt{2}\\ a^2-2b=6\end{matrix}\right.\Rightarrow a^2-2(2+3\sqrt{2}-a)=6\)
\(\Leftrightarrow a^2+2a=10+6\sqrt{2}\)
\(\Rightarrow (a+1)^2=11+6\sqrt{2}=(3+\sqrt{2})^2\)
\(\Rightarrow \left[\begin{matrix} a=2+\sqrt{2}\\ a=-4-\sqrt{2}\end{matrix}\right.\)\(\Rightarrow \left[\begin{matrix} b=2\sqrt{2}\\ b=6+4\sqrt{2}\end{matrix}\right.\)
Với \((a,b)=(2+\sqrt{2}; 2\sqrt{2})\) theo đl Viete đảo suy ra \((x,y)=(2,\sqrt{2})\) và hoán vị.
Với \((a,b)=(-4-\sqrt{2}, 6+4\sqrt{2})\Rightarrow \) theo đl Viete đảo thì (x,y) là nghiệm của pt: \(T^2+(4+\sqrt{2})T+6+4\sqrt{2}=0\), pt vô nghiệm nên không tồn tại $x,y$
Vậy \((x,y)=(2,\sqrt{2})\) và hoán vị.
Lời giải:
HPT \(\Leftrightarrow \left\{\begin{matrix}
\sqrt{xy}(\sqrt{x}+\sqrt{y})=30(1)\\
(\sqrt{x}+\sqrt{y})(x-\sqrt{xy}+y)=35\end{matrix}\right.\)
\(\Rightarrow 35\sqrt{xy}(\sqrt{x}+\sqrt{y})=30(\sqrt{x}+\sqrt{y})(x-\sqrt{xy}+y)\)
\(\Leftrightarrow (\sqrt{x}+\sqrt{y}))(30x-65\sqrt{xy}+30y)=0\)
Nếu $\sqrt{x}+\sqrt{y}=0$ thì từ $(1)$ suy ra $\sqrt{xy}.0=30$ (vô lý)
Nếu $30x-65\sqrt{xy}+30y=0$
$\Leftrightarrow 6x-13\sqrt{xy}+6y=0$
$\Leftrightarrow (2\sqrt{x}-3\sqrt{y})(3\sqrt{x}-2\sqrt{y})=0$
$\Rightarrow \sqrt{x}=\frac{3}{2}\sqrt{y}$ hoặc $\sqrt{x}=\frac{2}{3}\sqrt{y}$
Thay lần lượt từng TH vào $(1)\Rightarrow (x,y)=(9,4); (4,9)$
Lời giải:
HPT \(\Leftrightarrow \left\{\begin{matrix}
\sqrt{xy}(\sqrt{x}+\sqrt{y})=30(1)\\
(\sqrt{x}+\sqrt{y})(x-\sqrt{xy}+y)=35\end{matrix}\right.\)
\(\Rightarrow 35\sqrt{xy}(\sqrt{x}+\sqrt{y})=30(\sqrt{x}+\sqrt{y})(x-\sqrt{xy}+y)\)
\(\Leftrightarrow (\sqrt{x}+\sqrt{y}))(30x-65\sqrt{xy}+30y)=0\)
Nếu $\sqrt{x}+\sqrt{y}=0$ thì từ $(1)$ suy ra $\sqrt{xy}.0=30$ (vô lý)
Nếu $30x-65\sqrt{xy}+30y=0$
$\Leftrightarrow 6x-13\sqrt{xy}+6y=0$
$\Leftrightarrow (2\sqrt{x}-3\sqrt{y})(3\sqrt{x}-2\sqrt{y})=0$
$\Rightarrow \sqrt{x}=\frac{3}{2}\sqrt{y}$ hoặc $\sqrt{x}=\frac{2}{3}\sqrt{y}$
Thay lần lượt từng TH vào $(1)\Rightarrow (x,y)=(9,4); (4,9)$
Lời giải:
HPT \(\Leftrightarrow \left\{\begin{matrix}
\sqrt{xy}(\sqrt{x}+\sqrt{y})=30(1)\\
(\sqrt{x}+\sqrt{y})(x-\sqrt{xy}+y)=35\end{matrix}\right.\)
\(\Rightarrow 35\sqrt{xy}(\sqrt{x}+\sqrt{y})=30(\sqrt{x}+\sqrt{y})(x-\sqrt{xy}+y)\)
\(\Leftrightarrow (\sqrt{x}+\sqrt{y}))(30x-65\sqrt{xy}+30y)=0\)
Nếu $\sqrt{x}+\sqrt{y}=0$ thì từ $(1)$ suy ra $\sqrt{xy}.0=30$ (vô lý)
Nếu $30x-65\sqrt{xy}+30y=0$
$\Leftrightarrow 6x-13\sqrt{xy}+6y=0$
$\Leftrightarrow (2\sqrt{x}-3\sqrt{y})(3\sqrt{x}-2\sqrt{y})=0$
$\Rightarrow \sqrt{x}=\frac{3}{2}\sqrt{y}$ hoặc $\sqrt{x}=\frac{2}{3}\sqrt{y}$
Thay lần lượt từng TH vào $(1)\Rightarrow (x,y)=(9,4); (4,9)$
\(e,\left\{{}\begin{matrix}\left(\frac{x}{y}\right)^3+\left(\frac{x}{y}\right)^2=12\\\left(xy\right)^2+xy=6\end{matrix}\right.\left(x;y\ne0\right)\)
\(\Leftrightarrow\left\{{}\begin{matrix}\frac{x}{y}=2\\xy\in\left\{2;-3\right\}\end{matrix}\right.\)
Vì \(\frac{x}{y}=2>0\Rightarrow xy>0\Rightarrow xy=2\)
\(\Rightarrow\left\{{}\begin{matrix}\frac{x}{y}=2\\xy=2\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x=2y\\2y^2=2\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x=2\\y=1\end{matrix}\right.\left(h\right)\left\{{}\begin{matrix}x=-2\\y=-1\end{matrix}\right.\)
\(a,\left\{{}\begin{matrix}x^2+\frac{1}{y^2}+\frac{x}{y}=3\\x+\frac{1}{y}+\frac{x}{y}=3\end{matrix}\right.\left(x;y\ne0\right)\)
\(\Leftrightarrow\left\{{}\begin{matrix}\left(x+\frac{1}{y}\right)^2-\frac{x}{y}=3\\\left(x+\frac{1}{y}\right)+\frac{x}{y}=3\end{matrix}\right.\)
Đặt \(\left\{{}\begin{matrix}x+\frac{1}{y}=a\\\frac{x}{y}=b\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}a^2-b=3\\a+b=3\end{matrix}\right.\)
Làm nốt nha
a. ĐK: \(x\ge1;y\ge1\)
Đặt \(\sqrt{x-1}=a\left(a\ge0\right)\) và \(\sqrt{y-1}=b\left(b\ge0\right)\)
Khí đó hệ phương trình trở thành:
\(\left\{{}\begin{matrix}2a-b=1\\a+b=2\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}b=2a-1\\a+2a-1=2\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}b=2.1-1\\a=1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}b=1\\a=1\end{matrix}\right.\)(tm)
* a = 1 \(\Leftrightarrow\sqrt{x-1}=1\Leftrightarrow x-1=1\Leftrightarrow x=2\)(tmđk)
* b = 1 \(\sqrt{y-1}=1\Leftrightarrow y-1=1\Leftrightarrow y=2\) (tmđk)
Vậy nghiệm của hệ phương trình là (2;2)
b. Đặt \(\left(x-1\right)^2=a\) ( a \(\ge\) 0)
Khi đó hệ phương trình đã cho trở thành :
\(\left\{{}\begin{matrix}a-2y=2\\3a+3y=1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a=2+2y\\3\left(2+2y\right)+3y=1\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}a=2+2.\left(-\dfrac{5}{9}\right)\\y=-\dfrac{5}{9}\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a=\dfrac{8}{9}\\y=-\dfrac{5}{9}\end{matrix}\right.\)(tmđk)
* a = \(\dfrac{8}{9}\Leftrightarrow\) \(\left(x-1\right)^2=\dfrac{8}{9}=\left(\pm\dfrac{2\sqrt{2}}{3}\right)^2\) \(\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{2\sqrt{2}}{3}+1\\x=-\dfrac{2\sqrt{2}}{3}+1\end{matrix}\right.\)
Vậy nghiệm của hệ phương trình là \(\left(\dfrac{2\sqrt{2}}{3};-\dfrac{5}{9}\right);\left(\dfrac{-2\sqrt{2}}{3};-\dfrac{5}{9}\right)\)
Lời giải:
a)
HPT \(\Leftrightarrow \left\{\begin{matrix} 5x-y=4(1)\\ 3x-y=5(2)\end{matrix}\right.\)
Lấy $(1)$ trừ $(2)$:
$\Rightarrow 2x=-1\Rightarrow x=-\frac{1}{2}$
Thay $x=\frac{-1}{2}$ vào $(1):y=5x-4=5.\frac{-1}{2}-4=\frac{-13}{2}$
Vậy HPT có nghiệm $(x,y)=(\frac{-1}{2}, \frac{-13}{2})$
b)
\(\left\{\begin{matrix} \sqrt{3}x-\sqrt{2}y=1\\ \sqrt{2}x+\sqrt{3}y=\sqrt{3}\end{matrix}\right.\Leftrightarrow \left\{\begin{matrix} \sqrt{6}x-2y=\sqrt{2}(1)\\ \sqrt{6}x+3y=3(2)\end{matrix}\right.\)
Lấy $(2)-(1)$ thu được:
$5y=3-\sqrt{2}\Rightarrow y=\frac{3-\sqrt{2}}{5}$
Thay giá trị $y$ trên vào $(1): x=\frac{2y+\sqrt{2}}{\sqrt{6}}=\frac{\sqrt{6}+\sqrt{3}}{5}$
Vậy.........
Vậy nghiệm của hệ phương trình (0; 0), (9; 4), (4; 9)