Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
nhân chéo 2 vế của 2 pt, ta có
\(x^3-2y^3=\left(x+4y\right)\left(6x^2-19xy+15y^2\right)\)
sau khi rút gọc thì ta được pt
\(5x^3+5x^2y-61xy^2+62y^3=0\)
<=>\(\left(2y-x\right)\left(31y^2-15xy-5x^2\right)=0\)
đến đây thì tìm mối quan hệ giữa x và y rồi thay vào pt (2) để giải, nó sẽ trở thành pt bậc 2, nhưng sô sẽ hơi lẻ chút
^_^
a: \(\Leftrightarrow\left\{{}\begin{matrix}8x-4y+12-3x+6y-9=48\\9x-12y+9+16x-8y-36=48\end{matrix}\right.\)
=>5x+2y=48-12+9=45 và 25x-20y=48+36-9=48+27=75
=>x=7; y=5
b: \(\Leftrightarrow\left\{{}\begin{matrix}6x+6y-2x+3y=8\\-5x+5y-3x-2y=5\end{matrix}\right.\)
=>4x+9y=8 và -8x+3y=5
=>x=-1/4; y=1
c: \(\Leftrightarrow\left\{{}\begin{matrix}-4x-2+1,5=3y-6-6x\\11,5-12+4x=2y-5+x\end{matrix}\right.\)
=>-4x-0,5=-6x+3y-6 và 4x-0,5=x+2y-5
=>2x-3y=-5,5 và 3x-2y=-4,5
=>x=-1/2; y=3/2
e: \(\Leftrightarrow\left\{{}\begin{matrix}x\cdot2\sqrt{3}-y\sqrt{5}=2\sqrt{3}\cdot\sqrt{2}-\sqrt{5}\cdot\sqrt{3}\\3x-y=3\sqrt{2}-\sqrt{3}\end{matrix}\right.\)
=>\(x=\sqrt{2};y=\sqrt{3}\)
a, \(\left\{{}\begin{matrix}x=1\\y=1\end{matrix}\right.\)
b,\(\left\{{}\begin{matrix}x=3\\y=4\end{matrix}\right.\)
c,\(\left\{{}\begin{matrix}x=1\\y=1\end{matrix}\right.\)
d,\(\left\{{}\begin{matrix}x=0\\y=2\end{matrix}\right.\)
b/
Lần lượt cộng trừ vế cho vế ta được:
\(\left\{{}\begin{matrix}x^3+y^3=7\left(x+y\right)\\x^3-y^3=19\left(x-y\right)\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}\left(x+y\right)\left(x^2+y^2-xy-7\right)=0\\\left(x-y\right)\left(x^2+y^2+xy-19\right)=0\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=y\\x=-y\\\left\{{}\begin{matrix}x^2+y^2-xy-7=0\\x^2+y^2+xy-19=0\end{matrix}\right.\end{matrix}\right.\)
Hai trường hợp đầu bạn tự thế vào giải
Trường hợp 3, trừ vế cho vế: \(2xy-12=0\Rightarrow xy=6\Rightarrow y=\frac{6}{x}\)
Thế vào pt đầu: \(x^3=13x-\frac{36}{x}\Leftrightarrow x^4-13x^2+36=0\)
\(\Rightarrow\left[{}\begin{matrix}x^2=9\\x^2=4\end{matrix}\right.\)
a/ Trừ vế cho vế:
\(2x-2y=y^2-x^2-4y+4x\)
\(\Leftrightarrow x^2-y^2-2x+2y=0\)
\(\Leftrightarrow\left(x-y\right)\left(x+y\right)-2\left(x-y\right)=0\)
\(\Leftrightarrow\left(x-y\right)\left(x+y-2\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}y=x\\y=2-x\end{matrix}\right.\)
Thế vào pt đầu:
\(\Rightarrow\left[{}\begin{matrix}2x=x^2-4x+5\\2x=\left(2-x\right)^2-4\left(2-x\right)+5\end{matrix}\right.\)
Bạn tự giải nốt
1/ ĐKXĐ:...
\(\Leftrightarrow\left\{{}\begin{matrix}\frac{2}{x}+\frac{3}{y-2}=4\\\frac{12}{x}+\frac{3}{y-2}=3\end{matrix}\right.\) \(\Rightarrow\frac{10}{x}=-1\Rightarrow x=-10\)
\(\frac{4}{-10}+\frac{1}{y-2}=1\Rightarrow\frac{1}{y-2}=\frac{7}{5}\Rightarrow y-2=\frac{5}{7}\Rightarrow y=\frac{19}{7}\)
2/ ĐKXĐ:...
Đặt \(\left\{{}\begin{matrix}\frac{1}{2x-y}=a\\\frac{1}{x+y}=b\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}2a-b=0\\3a-6b=-1\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}a=\frac{1}{9}\\b=\frac{2}{9}\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}\frac{1}{2x-y}=\frac{1}{9}\\\frac{1}{x+y}=\frac{2}{9}\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}2x-y=9\\x+y=\frac{9}{2}\end{matrix}\right.\) \(\Rightarrow...\)
3/ \(\Leftrightarrow\left\{{}\begin{matrix}5x+10y=3x-1\\2x+4=3x-6y-15\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}2x+10y=-1\\-x+6y=-19\end{matrix}\right.\) \(\Rightarrow...\)
4/ Bạn tự giải
\(2,\left\{{}\begin{matrix}x^3-2x^2y-15x=6y\left(2x-5-4y\right)\left(1\right)\\\frac{x^2}{8y}+\frac{2x}{3}=\sqrt{\frac{x^3}{3y}+\frac{x^2}{4}}-\frac{y}{2}\left(2\right)\end{matrix}\right.\)
\(\left(1\right)\Leftrightarrow\left(2y-x\right)\left(x^2-12y-15\right)=0\)\(\Leftrightarrow\left[{}\begin{matrix}2y=x\\y=\frac{x^2-15}{12}\end{matrix}\right.\)
Ta xét các trường hợp sau:
Trường hợp 1:
\(y=\frac{x^2-15}{12}\) thay vào phương trình \(\left(2\right)\) ta được:
\(\frac{3x^2}{2\left(x^2-15\right)}+\frac{2x}{3}=\sqrt{\frac{4x^3}{x^2-15}+\frac{x^2}{4}}-\frac{x^2-15}{24}\)
\(\Leftrightarrow\frac{36x^2}{x^2-15}-12\sqrt{\frac{x^2}{x^2-15}\left(x^2+16x-15\right)}+\left(x^2+16x-15\right)=0\)
\(\Leftrightarrow\left\{{}\begin{matrix}x^2+16x-15\ge0\\6\sqrt{\frac{x^2}{x^2-15}}=\sqrt{\left(x^2+16x-15\right)}\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}x^2+16x-15\ge0\\36\frac{x^2}{x^2-15}=x^2+16x-15\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x^2+16x-15\ge0\\36x^2=\left(x^2-15\right)\left(x^2+16x-15\right)\left(3\right)\end{matrix}\right.\)
Ta xét phương trình \(\left(3\right):36x^2=\left(x^2-15\right)\left(x^2+16x-15\right)\)
Vì: \(x=0\) Không phải là nghiệm. Ta chia cả hai vế p.trình cho \(x^2\) ta được:
\(36=\left(x-\frac{15}{x}\right)\left(x+16-\frac{15}{x}\right)\)
Đặt: \(x-\frac{15}{x}=t\Rightarrow t^2+16t-36=0\Leftrightarrow\left[{}\begin{matrix}t=2\\t=-18\end{matrix}\right.\)
+ Nếu như:
\(t=2\Leftrightarrow x-\frac{15}{x}=2\Leftrightarrow x^2-2x-15=0\Leftrightarrow\left[{}\begin{matrix}x=5\\x=-3\end{matrix}\right.\)\(\Leftrightarrow x=5\)
+ Nếu như:
\(t=-18\Leftrightarrow x-\frac{15}{x}=-18\Leftrightarrow x^2+18x-15=0\Leftrightarrow\left[{}\begin{matrix}x=-9-4\sqrt{6}\\x=-9+4\sqrt{6}\end{matrix}\right.\Leftrightarrow x=-9-4\sqrt{6}\)
Trường hợp 2:
\(x=2y\) thay vào p.trình \(\left(2\right)\) ta được:
\(\Leftrightarrow\frac{x^2}{4x}+\frac{2x}{3}=\sqrt{\frac{2x^3}{3x}+\frac{x^2}{4}}-\frac{x}{4}\Leftrightarrow\frac{7}{6}x=\sqrt{\frac{11x^2}{12}}\Leftrightarrow x=0\left(ktmđk\right)\)
Vậy nghiệm của hệ đã cho là: \(\left(x,y\right)=\left(5;\frac{5}{6}\right),\left(-9-4\sqrt{6};\frac{27+12\sqrt{6}}{2}\right)\)
Năm mới chắc bị lag @@ tớ sửa luôn đề câu 3 nhé :v
3, \(\left\{{}\begin{matrix}8\left(x^2+y^2\right)+4xy+\frac{5}{\left(x+y\right)^2}=13\left(1\right)\\2xy+\frac{1}{x+y}=1\left(2\right)\end{matrix}\right.\)
\(\left(1\right)\Leftrightarrow8\left[\left(x+y\right)^2-2xy\right]+4xy+\frac{5}{\left(x+y\right)^2}=13\)
Đặt \(\left\{{}\begin{matrix}x+y=a\\xy=b\end{matrix}\right.\)
\(\left(1\right)\Leftrightarrow8\left(a^2-2b\right)+4b+\frac{5}{a^2}=13\)
\(\Leftrightarrow8a^2-12b+\frac{5}{a^2}=13\)
Ta cũng có \(\left(2\right)\Leftrightarrow2b+\frac{1}{a}=1\)
\(\Leftrightarrow2b=1-\frac{1}{a}\)
Thay vào (1) ta được :
\(8a^2+\frac{5}{a^2}-6\cdot\left(1-\frac{1}{a}\right)=13\)
\(\Leftrightarrow8a^2+\frac{5}{a^2}-6+\frac{6}{a}=13\)
\(\Leftrightarrow8a^2+\frac{5}{a^2}+\frac{6}{a}=19\)
Giải pt được \(a=1\)
Khi đó \(b=\frac{1-\frac{1}{1}}{2}=0\)
Ta có hệ :
\(\left\{{}\begin{matrix}x+y=1\\xy=0\end{matrix}\right.\)\(\Leftrightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}x=0\\y=1\end{matrix}\right.\\\left\{{}\begin{matrix}x=1\\y=0\end{matrix}\right.\end{matrix}\right.\)
Vậy...
\(\left\{{}\begin{matrix}x^3-2y^3=x+4y\left(1\right)\\6x^2-19xy+15y^2=1\left(2\right)\end{matrix}\right.\)
_ Xét y=0 không phải là nghiệm của hệ phương trình
_ Xét y\(\ne0\)
Đặt x=ty
Ta có (1)\(\Leftrightarrow t^3y^3-2y^3=ty+4y\Leftrightarrow t^3y^2-2y^2=t+4\Leftrightarrow y^2=\dfrac{t+4}{t^3-2}\left(3\right)\)
(2)\(\Leftrightarrow6t^2y^2-19ty^2+15y^2=1\Leftrightarrow y^2\left(6t^2-19t+15\right)=1\Leftrightarrow y^2=\dfrac{1}{6t^2-19t+15}\left(4\right)\)
Từ (3),(4)\(\Rightarrow\)\(\dfrac{t+4}{t^3-2}=\dfrac{1}{6t^2-19t+15}\Leftrightarrow t^3-2=\left(t+4\right)\left(6t^2-19t+15\right)\Leftrightarrow t^3-2=6t^3-19t^2+15t+24t^2-76t+60\Leftrightarrow5t^3+5t^2-61t+62=0\Leftrightarrow\left(t-2\right)\left(5t^2+15t-31\right)=0\Leftrightarrow\)\(\left[{}\begin{matrix}t=2\\t=\dfrac{-15+13\sqrt{5}}{10}\\t=\dfrac{-15-13\sqrt{5}}{10}\end{matrix}\right.\)
Từ đó tìm x,y
mơn bạn nhìu