Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\Leftrightarrow\hept{\begin{cases}\left(x^2+y^2\right)^2=-4z^2+9z-5\\\left(x-y\right)^2=4z-5\end{cases}}\)ta dễ thấy để hai phương trình có ng thì vế phải của 2 phương trình phải dương nên có hệ điều kiện :
\(\Rightarrow\hept{\begin{cases}-4z^2+9z-5\ge0\\4z-5\ge0\end{cases}}\Leftrightarrow\hept{\begin{cases}\left(4z-5\right)\left(1-z\right)\ge0\\z\ge\frac{5}{4}\end{cases}}\)
- TH1 : \(\hept{\begin{cases}4z-5\ge0\\1-z\ge0\\z\ge\frac{5}{4}\end{cases}}\Leftrightarrow\hept{\begin{cases}z\ge\frac{5}{4}\\z\le1\\z\ge\frac{5}{4}\end{cases}}\left(vn\right)\)
- TH2: \(\hept{\begin{cases}4z-5\le0\\1-z\le0\\4z-5\ge0\end{cases}\Leftrightarrow\hept{\begin{cases}z\le\frac{5}{4}\\z\ge1\\z\ge\frac{5}{4}\end{cases}}\Leftrightarrow z=\frac{5}{4}}\)
Ta thế \(Z=\frac{5}{4}\)vào ta có hệ \(\hept{\begin{cases}\left(x^2+y^2\right)^2=0\\\left(x-y\right)^2=0\end{cases}}\Leftrightarrow\hept{\begin{cases}x^2+y^2=0\\x-y=0\end{cases}\Leftrightarrow x=y=0}\)
Kết luận nghiệm \(\left(x,y,z\right)=\left(0;0;\frac{5}{4}\right)\)
Ta có hpt \(\left\{{}\begin{matrix}xy+3y-5x-15=xy\\2xy+30x-y^2-15y=0\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}5x=3y-15\\6\left(3y-15\right)-y^2-15y=0\end{matrix}\right.\)
Ta có pt (2) \(\Leftrightarrow3y-y^2-80=0\Leftrightarrow y^2-3y+80=0\left(VN\right)\)
=> hpy vô nghiệm
c) Ta có hpt \(\Leftrightarrow\left\{{}\begin{matrix}xy\left(x+y\right)\left(xy+x+y\right)=30\\xy\left(x+y\right)+xy+x+y=11\end{matrix}\right.\)
Đặt j\(xy\left(x+y\right)=a;xy+x+y=b\), ta có hpt
\(\left\{{}\begin{matrix}ab=30\\a+b=11\end{matrix}\right.\)\(\Leftrightarrow\left[{}\begin{matrix}a=5;b=6\\a=6;b=5\end{matrix}\right.\)
với a=5;b=6, ta có \(\left\{{}\begin{matrix}xy\left(x+y\right)=5\\xy+x+y=6\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}xy=1;x+y=5\\xy=5;x+y=1\end{matrix}\right.\)
đến đây thì thế y hoặc x ra pt bậc 2, còn TH còn lại bn tự giải nhé !
1/ ĐKXĐ:...
\(\Leftrightarrow\left\{{}\begin{matrix}\frac{2}{x}+\frac{3}{y-2}=4\\\frac{12}{x}+\frac{3}{y-2}=3\end{matrix}\right.\) \(\Rightarrow\frac{10}{x}=-1\Rightarrow x=-10\)
\(\frac{4}{-10}+\frac{1}{y-2}=1\Rightarrow\frac{1}{y-2}=\frac{7}{5}\Rightarrow y-2=\frac{5}{7}\Rightarrow y=\frac{19}{7}\)
2/ ĐKXĐ:...
Đặt \(\left\{{}\begin{matrix}\frac{1}{2x-y}=a\\\frac{1}{x+y}=b\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}2a-b=0\\3a-6b=-1\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}a=\frac{1}{9}\\b=\frac{2}{9}\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}\frac{1}{2x-y}=\frac{1}{9}\\\frac{1}{x+y}=\frac{2}{9}\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}2x-y=9\\x+y=\frac{9}{2}\end{matrix}\right.\) \(\Rightarrow...\)
3/ \(\Leftrightarrow\left\{{}\begin{matrix}5x+10y=3x-1\\2x+4=3x-6y-15\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}2x+10y=-1\\-x+6y=-19\end{matrix}\right.\) \(\Rightarrow...\)
4/ Bạn tự giải
a) ĐK: \(x\ge\frac{-1}{2}\)
\(x^2-\left(2x+1+2\sqrt{2x+1}+1\right)=0\)
\(\Leftrightarrow x^2-\left(\sqrt{2x+1}+1\right)^2=0\)
\(\Leftrightarrow\left(x-\sqrt{2x+1}-1\right)\left(x+\sqrt{2x+1}+1\right)=0\)
Vì \(x\ge\frac{-1}{2}\) nên \(x+\sqrt{2x+1}+1>0\)
\(\Rightarrow x-\sqrt{2x+1}-1=0\)
\(\Leftrightarrow x-1=\sqrt{2x+1}\)
\(\Rightarrow x^2-4x=0\)
\(\Leftrightarrow\orbr{\begin{cases}x=0\\x=4\end{cases}}\)
Thử lại chỉ có x = 4 thỏa mãn
a: \(\Leftrightarrow\left\{{}\begin{matrix}8x-4y+12-3x+6y-9=48\\9x-12y+9+16x-8y-36=48\end{matrix}\right.\)
=>5x+2y=48-12+9=45 và 25x-20y=48+36-9=48+27=75
=>x=7; y=5
b: \(\Leftrightarrow\left\{{}\begin{matrix}6x+6y-2x+3y=8\\-5x+5y-3x-2y=5\end{matrix}\right.\)
=>4x+9y=8 và -8x+3y=5
=>x=-1/4; y=1
c: \(\Leftrightarrow\left\{{}\begin{matrix}-4x-2+1,5=3y-6-6x\\11,5-12+4x=2y-5+x\end{matrix}\right.\)
=>-4x-0,5=-6x+3y-6 và 4x-0,5=x+2y-5
=>2x-3y=-5,5 và 3x-2y=-4,5
=>x=-1/2; y=3/2
e: \(\Leftrightarrow\left\{{}\begin{matrix}x\cdot2\sqrt{3}-y\sqrt{5}=2\sqrt{3}\cdot\sqrt{2}-\sqrt{5}\cdot\sqrt{3}\\3x-y=3\sqrt{2}-\sqrt{3}\end{matrix}\right.\)
=>\(x=\sqrt{2};y=\sqrt{3}\)
Từ pt đầu: \(4z-5=\left(x-y\right)^2\ge0\Rightarrow z\ge\frac{5}{4}\) (1)
Từ pt sau: \(-4z^2+9z-5=\left(x^2+y^2\right)^2\ge0\)
\(\Rightarrow\left(z-1\right)\left(4z-5\right)\le0\Rightarrow1\le z\le\frac{5}{4}\) (2)
Từ (1) và (2) suy ra \(z=\frac{5}{4}\)
Thế vào pt ban đầu được: \(\left\{{}\begin{matrix}\left(x-y\right)^2=0\\\left(x^2+y^2\right)^2=0\end{matrix}\right.\) \(\Leftrightarrow x=y=0\)