\(\left\{{}\begin{matrix}x^2+y^2=2x\\\left(x-1\right)^3+y^3=1\end{...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
7 tháng 3 2020

\(\Leftrightarrow\left\{{}\begin{matrix}x^2-2x+1+y^2=1\\\left(x-1\right)^3+y^3=1\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}\left(x-1\right)^2+y^2=1\\\left(x-1\right)^3+y^3=1\end{matrix}\right.\)

Do \(\left(x-1\right)^2+y^2=1\Rightarrow\left\{{}\begin{matrix}\left|x-1\right|\le1\\\left|y\right|\le1\end{matrix}\right.\)

\(\Rightarrow\left\{{}\begin{matrix}\left(x-1\right)^3\le\left(x-1\right)^2\\y^3\le y^2\end{matrix}\right.\) \(\Rightarrow\left(x-1\right)^3+y^3\le\left(x-1\right)^2+y^2=1\)

Dấu "=" xảy ra khi và chỉ khi \(\left[{}\begin{matrix}\left\{{}\begin{matrix}x-1=0\\y=1\end{matrix}\right.\\\left\{{}\begin{matrix}x-1=1\\y=0\end{matrix}\right.\end{matrix}\right.\) \(\Rightarrow\left(x;y\right)=\left(1;1\right);\left(2;0\right)\)

29 tháng 2 2020

Xem lại đề đi bạn ._.

29 tháng 2 2020

pt 2 tất cả là bậc 3

NV
20 tháng 5 2020

d/

\(f'\left(x\right)=4cos^2\frac{x}{2}-2x.2cos\frac{x}{2}.sin\frac{x}{2}=2\left(1+cosx\right)-2x.sinx\)

\(f'\left(x\right)=g\left(x\right)\)

\(\Leftrightarrow2+2cosx-2x.sinx=8cos\frac{x}{2}-3-2sinx\)

Chà, có vẻ bạn ghi ko đúng đề, pt này ko giải được.

Chắc \(g\left(x\right)=8cos\frac{x}{2}-3-2x.sinx\) mới đúng chứ nhỉ?

NV
20 tháng 5 2020

c/

\(f'\left(x\right)=4x.cos^2\frac{x}{2}-2x^2.cos\frac{x}{2}.sin\frac{x}{2}=2x\left(1+cosx\right)-x^2sinx\)

\(f'\left(x\right)=g\left(x\right)\)

\(\Leftrightarrow2x\left(1+cosx\right)-x^2sinx=x-x^2sinx\)

\(\Leftrightarrow2x\left(1+cosx\right)=x\)

\(\Leftrightarrow\left[{}\begin{matrix}x=0\\2\left(1+cosx\right)=1\left(1\right)\end{matrix}\right.\)

\(\left(1\right)\Leftrightarrow cosx=-\frac{1}{2}\)

\(\Rightarrow\left[{}\begin{matrix}x=\frac{2\pi}{3}+k2\pi\\x=-\frac{2\pi}{3}+k2\pi\end{matrix}\right.\)

30 tháng 7 2019
https://i.imgur.com/qOszLcC.jpg
9 tháng 7 2019

4sin2x = 3 <=> \(\left[{}\begin{matrix}sinx=\frac{\sqrt{3}}{2}\\sinx=\frac{-\sqrt{3}}{2}\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}x=\frac{\pi}{3}+k2\pi\\x=\frac{2\pi}{3}+k2\pi\end{matrix}\right.\) hoặc \(\left[{}\begin{matrix}x=\frac{-\pi}{3}+k2\pi\\x=\frac{4\pi}{3}+k2\pi\end{matrix}\right.\)

kết hợp nghiệm trên đường tròn lượng giác , ta suy ra B

NV
13 tháng 3 2020

a/ \(\lim\limits_{x\rightarrow\sqrt{2}}f\left(x\right)=\lim\limits_{x\rightarrow\sqrt{2}}\frac{\left(x-\sqrt{2}\right)\left(x+\sqrt{2}\right)}{x-\sqrt{2}}=\lim\limits_{x\rightarrow\sqrt{2}}\left(x+\sqrt{2}\right)=2\sqrt{2}\)

\(\Rightarrow\lim\limits_{x\rightarrow\sqrt{2}}f\left(x\right)=f\left(\sqrt{2}\right)\Rightarrow\) hàm số liên tục tại \(x=\sqrt{2}\)

b/ \(\lim\limits_{x\rightarrow5^+}f\left(x\right)=\lim\limits_{x\rightarrow5^+}\frac{x-5}{\sqrt{2x-1}-3}=\frac{\left(x-5\right)\left(\sqrt{2x-1}+3\right)}{2\left(x-5\right)}=\lim\limits_{x\rightarrow5^+}\frac{\sqrt{2x-1}+3}{2}=3\)

\(f\left(5\right)=\lim\limits_{x\rightarrow5^-}f\left(x\right)=\lim\limits_{x\rightarrow5^-}\left[\left(x-5\right)^2+3\right]=5\)

\(\Rightarrow\lim\limits_{x\rightarrow5^+}f\left(x\right)=\lim\limits_{x\rightarrow5^-}f\left(x\right)=f\left(5\right)\Rightarrow\) hàm số liên tục tại \(x=5\)