\(\left\{{}\begin{matrix}x^2+2xy+2y^2=2y+1\\3x^2+2xy-y^2=2x-y+5\end{matrix}...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

13 tháng 7 2019

Giải giúp mik câu c thôi cx đc!

Help me !!! gianroi

AH
Akai Haruma
Giáo viên
14 tháng 11 2017

Lời giải:

PT(1): \(x^3-2x^2y+x=y^3-2xy^2+y\)

\(\Leftrightarrow (x^3-y^3)-2xy(x-y)+(x-y)=0\)

\(\Leftrightarrow (x-y)(x^2+xy+y^2)-2xy(x-y)+(x-y)=0\)

\(\Leftrightarrow (x-y)(x^2-xy+y^2+1)=0\)

Ta thấy:

\(x^2-xy+y^2+1=(x-\frac{y}{2})^2+\frac{3y^2}{4}+1\geq 1>0\) với mọi số thực x,y

Do đó: \(x-y=0\Leftrightarrow x=y\)

Thay vào PT(2):

\(\sqrt{y-1}+\sqrt{5-y}=-y^2+2y+1\)

Xét: \(\text{VT}^2=4+2\sqrt{(y-1)(5-y)}\geq 4\) nên \(\text{VT}\geq 2\) hoặc \(\text{VT}\leq -2\). Mà vế trái luôn không âm nên:

\(\Rightarrow \text{VT}\geq 2\)

Xét \(\text{VP}=-(y^2-2y+1)+2=2-(y-1)^2\leq 2\forall y\in\mathbb{R}\)

\(\text{VT}=\text{VP}\Leftrightarrow \text{VT}=\text{VP}=2\)

Dấu bằng xảy ra khi \(y=1\)

Vậy \((x,y)=(1,1)\)

AH
Akai Haruma
Giáo viên
7 tháng 2 2020

Lời giải:

Lấy PT(1) trừ đi PT(2) ta thu được:

$x^2+xy-x+y-2y^2=0$

$\Leftrightarrow (x^2-y^2)+(xy-y^2)-(x-y)=0$

$\Leftrightarrow (x-y)(x+y)+y(x-y)-(x-y)=0$

$\Leftrightarrow (x-y)(x+2y-1)=0$

$\Rightarrow x-y=0$ hoặc $x+2y-1=0$

Nếu $x-y=0\Rightarrow x=y$

Thay vào PT(1): $2y^2+3y^2+2y+y=0$

$\Leftrightarrow y=0$ hoặc $y=-\frac{3}{5}$

$y=0$ thì $x=0$

$y=-\frac{3}{5}$ thì $x=\frac{-3}{5}$

Nếu $x+2y-1=0\Rightarrow 2y=1-x$. Thay vào PT(2):

$2x^2+2x(1-x)+(1-x)^2+6x=0$

$\Leftrightarrow x^2+6x+1=0$

$\Rightarrow x=-3\pm 2\sqrt{2}\Rightarrow y=2\mp \sqrt{2}$

Vậy.......

AH
Akai Haruma
Giáo viên
2 tháng 2 2020

Lời giải:

Lấy PT(1) trừ đi PT(2) ta thu được:

$x^2+xy-x+y-2y^2=0$

$\Leftrightarrow (x^2-y^2)+(xy-y^2)-(x-y)=0$

$\Leftrightarrow (x-y)(x+y)+y(x-y)-(x-y)=0$

$\Leftrightarrow (x-y)(x+2y-1)=0$

$\Rightarrow x-y=0$ hoặc $x+2y-1=0$

Nếu $x-y=0\Rightarrow x=y$

Thay vào PT(1): $2y^2+3y^2+2y+y=0$

$\Leftrightarrow y=0$ hoặc $y=-\frac{3}{5}$

$y=0$ thì $x=0$

$y=-\frac{3}{5}$ thì $x=\frac{-3}{5}$

Nếu $x+2y-1=0\Rightarrow 2y=1-x$. Thay vào PT(2):

$2x^2+2x(1-x)+(1-x)^2+6x=0$

$\Leftrightarrow x^2+6x+1=0$

$\Rightarrow x=-3\pm 2\sqrt{2}\Rightarrow y=2\mp \sqrt{2}$

Vậy.......