\(\left\{{}\begin{matrix}\sqrt{x+2}+\sqrt{y+2}=\sqrt{8+5x-y}\\3x+...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

DD
16 tháng 12 2022

Điều kiện xác định: \(\left\{{}\begin{matrix}x+2\ge0\\8+5x-y\ge0\\2-x+2y\ge0\\3y+5\ge0\end{matrix}\right.\)

Phương trình (1) tương đương với: 

\(x+2+y+2+2\sqrt{\left(x+2\right)\left(y+2\right)}=8+5x-y\)

\(\Leftrightarrow\sqrt{\left(x+2\right)\left(y+2\right)}=2x-y+2\)

\(\Leftrightarrow\left\{{}\begin{matrix}xy+2x+2y+4=\left(2x-y+2\right)^2\\2x-y+2\ge0\end{matrix}\right.\)

\(\Leftrightarrow4x^2+y^2-5xy+6x-6y=0\) (với \(2x-y+2\ge0\))

\(\Leftrightarrow\left(x-y\right)\left(4x-y+6\right)=0\) (với \(2x-y+2\ge0\))

\(\Leftrightarrow x=y\) (vì \(4x-y+6=2x-y+2+2\left(x+2\right)\ge0\), dấu "\(=\)" xảy ra khi \(x=y=-2\) khi đó \(3y+5=-1< 0\) không thỏa mãn điều kiện xác định).

Với \(x=y\) thế vào phương trình (2) ta được: 

\(x^2+3x+4=\sqrt{10+5x}+\sqrt{3x+5}\)

\(\Leftrightarrow x^2+x-1+\left(x+3-\sqrt{5x+10}\right)+\left(x+2-\sqrt{3x+5}\right)=0\)

\(\Leftrightarrow x^2+x-1+\dfrac{\left(x+3\right)^2-\left(5x+10\right)}{x+3+\sqrt{5x+10}}+\dfrac{\left(x+2\right)^2-\left(3x+5\right)}{x+2+\sqrt{3x+5}}=0\)

\(\Leftrightarrow\left(x^2+x-1\right)\left(1+\dfrac{1}{x+3+\sqrt{5x+10}}+\dfrac{1}{x+2+\sqrt{3x+5}}\right)=0\)

\(\Leftrightarrow x^2+x-1=0\) (vì theo điều kiện thì ...\(>0\))

\(\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{-1+\sqrt{5}}{2}\Rightarrow y=\dfrac{-1+\sqrt{5}}{2}\\x=\dfrac{-1-\sqrt{5}}{2}\Rightarrow y=\dfrac{-1-\sqrt{5}}{2}\end{matrix}\right.\).

Thử lại ta thấy cả hai nghiệm đều thỏa mãn.

Vậy hệ phương trình đã cho có hai nghiệm \(\left(x;y\right)\) là \(\left(\dfrac{-1-\sqrt{5}}{2};\dfrac{-1-\sqrt{5}}{2}\right),\left(\dfrac{-1+\sqrt{5}}{2};\dfrac{-1+\sqrt{5}}{2}\right)\).

 

NV
13 tháng 3 2020

a/ \(\lim\limits_{x\rightarrow\sqrt{2}}f\left(x\right)=\lim\limits_{x\rightarrow\sqrt{2}}\frac{\left(x-\sqrt{2}\right)\left(x+\sqrt{2}\right)}{x-\sqrt{2}}=\lim\limits_{x\rightarrow\sqrt{2}}\left(x+\sqrt{2}\right)=2\sqrt{2}\)

\(\Rightarrow\lim\limits_{x\rightarrow\sqrt{2}}f\left(x\right)=f\left(\sqrt{2}\right)\Rightarrow\) hàm số liên tục tại \(x=\sqrt{2}\)

b/ \(\lim\limits_{x\rightarrow5^+}f\left(x\right)=\lim\limits_{x\rightarrow5^+}\frac{x-5}{\sqrt{2x-1}-3}=\frac{\left(x-5\right)\left(\sqrt{2x-1}+3\right)}{2\left(x-5\right)}=\lim\limits_{x\rightarrow5^+}\frac{\sqrt{2x-1}+3}{2}=3\)

\(f\left(5\right)=\lim\limits_{x\rightarrow5^-}f\left(x\right)=\lim\limits_{x\rightarrow5^-}\left[\left(x-5\right)^2+3\right]=5\)

\(\Rightarrow\lim\limits_{x\rightarrow5^+}f\left(x\right)=\lim\limits_{x\rightarrow5^-}f\left(x\right)=f\left(5\right)\Rightarrow\) hàm số liên tục tại \(x=5\)

30 tháng 7 2019
https://i.imgur.com/qOszLcC.jpg
15 tháng 9 2019

Câu 2 đây ạ

Chương 1: HÀM SỐ LƯỢNG GIÁC. PHƯƠNG TRÌNH LƯỢNG GIÁC