Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1)Điều kiện: \(x + y > 0\)\((1) \Leftrightarrow (x + y)^2 - 2xy + \dfrac{2xy}{x + y} - 1 = 0 \\ \Leftrightarrow (x + y)^3 - 2xy(x + y) + 2xy -(x + y) = 0 \\ \Leftrightarrow (x+y)[(x+y)^2- 1]-2xy(x+y-1)=0 \\ \Leftrightarrow (x+y)(x+y+1)(x+y-1)-2xy(x+y-1)=0 \\ \Leftrightarrow (x + y - 1)[(x+y)(x + y + 1)-2xy] = 0 \\ \Leftrightarrow \left[ \begin{matrix}x + y = 1 \,\, (3) \\ x^2+y^2+x+y=0 \,\, (4) \end{matrix} \right.\)(4) vô nghiệm vì x + y > 0
Thế (3) vào (2) , giải được nghiệm của hệ :\((x =1 ; y = 0)\)và \((x = -2 ; y = 3)\)
\((1)\Leftrightarrow (x-2y)+(2x^3-4x^2y)+(xy^2-2y^3)=0\)\(\Leftrightarrow (x-2y)(1+2x^2+y^2)=0\)
\(\Leftrightarrow x=2y\)(vì \(1+2x^2+y^2>0, \forall x,y\))
Thay vào phương trình (2) giải dễ dàng.
b)\(\sqrt{5x^2+2xy+2y^2}+\sqrt{2x^2+2xy+5y^2}=3\left(x+y\right)\)
\(\Rightarrow\left(\sqrt{5x^2+2xy+2y^2}+\sqrt{2x^2+2xy+5y^2}\right)^2=\left(3\left(x+y\right)\right)^2\)
\(\Leftrightarrow\sqrt{\left(5x^2+2xy+2y^2\right)\left(2x^2+2xy+5y^2\right)}=x^2+7xy+y^2\)
\(\Rightarrow\left(5x^2+2xy+2y^2\right)\left(2x^2+2xy+5y^2\right)=\left(x^2+7xy+y^2\right)^2\)
\(\Leftrightarrow9\left(x-y\right)^2\left(x+y\right)^2=0\)\(\Leftrightarrow\left[{}\begin{matrix}x=y\\x=-y\end{matrix}\right.\)
\(\rightarrow\left(x;y\right)\in\left\{\left(0;0\right),\left(1;1\right)\right\}\)
Câu 1.
Điều kiện: \(x^2\ge2y+1\)
Từ $(1)$ ta được \(\left(x^2-2y\right)\left(x-y\right)=0\Leftrightarrow\left[{}\begin{matrix}x^2=2y\left(L\right)\\x=y\end{matrix}\right.\)
Khi đó $(2)$ \(\Leftrightarrow2\sqrt{x^2-2x-1}+\sqrt[3]{x^3-14}=x-2\Leftrightarrow2\sqrt{x^2-2x-1}+\sqrt[3]{x^3-14}-\left(x-2\right)=0\)
\(\begin{array}{l} \Leftrightarrow 2\sqrt {{x^2} - 2x - 1} + \dfrac{{{x^3} - 14 - {{\left( {x - 2} \right)}^3}}}{{\sqrt[3]{{{{\left( {{x^3} - 14} \right)}^2}}} + \sqrt[3]{{\left( {{x^3} - 14} \right)}}\left( {x - 2} \right) + {{\left( {x - 2} \right)}^2}}} = 0\\ \Leftrightarrow 2\sqrt {{x^2} - 2x + 1} + \dfrac{{6{x^2} - 12x - 6}}{{\sqrt[3]{{{{\left( {{x^3} - 14} \right)}^2}}} + \sqrt[3]{{\left( {{x^3} - 14} \right)}}\left( {x - 2} \right){{\left( {x - 2} \right)}^2}}} = 0\\ \Leftrightarrow 2\sqrt {{x^2} - 2x + 1} \left[ {1 + \dfrac{{3\sqrt {{x^2} - 2x - 1} }}{{\sqrt[3]{{{{\left( {{x^3} - 14} \right)}^2}}} + \sqrt[3]{{\left( {{x^3} - 14} \right)}}\left( {x - 2} \right){{\left( {x - 2} \right)}^2}}}} \right] = 0 \Leftrightarrow \sqrt {{x^2} - 2x - 1} = 0 \end{array} \)
Từ đó ta được \(x^2-2x-1=0\Leftrightarrow\left[{}\begin{matrix}x=1+\sqrt{2}\Rightarrow y=1+\sqrt{2}\\x=1-\sqrt{2}\Rightarrow y=1-\sqrt{2}\end{matrix}\right.\)
Vậy hệ phương trình đã cho có nghiệm $(x;y)=$\(\left\{\left(1+\sqrt{2};1+\sqrt{2}\right),\left(1-\sqrt{2};1-\sqrt{2}\right)\right\}\)
Câu 2.
Điều kiện: \(y \ge 0,x \ge -2\)
Từ phương trình $(1)$ tương đương:
$$2\sqrt{x+y^2+y+3}=3\sqrt{y}+\sqrt{x+2}$$
Ta có:
$$3\sqrt y + \sqrt {x + 2} = \sqrt 3 .\sqrt {3y} + 1.\sqrt {x + 2} \le 2\sqrt {3y + x + 2}$$
Ta chứng minh:
$$2\sqrt {3y + x + 2} \le 2\sqrt {x + {y^2} + y + 3} \Leftrightarrow {\left( {y - 1} \right)^2} \ge 0$$
Đẳng thức xảy ra khi $y=1$ và \(\sqrt{y}=\sqrt{x+2}\Rightarrow x=-1\)
Thay vào phương trình $(2)$ thấy thỏa mãn.
Vậy nghiệm hệ phương trình $(x;y)=(-1;1)$
5,\(hpt\Leftrightarrow\left\{{}\begin{matrix}x\left(x+y\right)\left(x+2\right)=0\\2\sqrt{x^2-2y-1}+\sqrt[3]{y^3-14}=x-2\end{matrix}\right.\)
Thay từng TH rồi làm nha bạn
3,\(hpt\Leftrightarrow\left\{{}\begin{matrix}x-y=\frac{1}{x}-\frac{1}{y}=\frac{y-x}{xy}\\2y=x^3+1\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}\left(x-y\right)\left(1+\frac{1}{xy}\right)=0\\2y=x^3+1\end{matrix}\right.\)
thay nhá
Bài 1:ĐKXĐ: \(2x\ge y;4\ge5x;2x-y+9\ge0\)\(\Rightarrow2x\ge y;x\le\frac{4}{5}\Rightarrow y\le\frac{8}{5}\)
PT(1) \(\Leftrightarrow\left(x-y-1\right)\left(2x-y+3\right)=0\)
+) Với y = x - 1 thay vào pt (2):
\(\frac{2}{3+\sqrt{x+1}}+\frac{2}{3+\sqrt{4-5x}}=\frac{9}{x+10}\) (ĐK: \(-1\le x\le\frac{4}{5}\))
Anh quy đồng lên đê, chắc cần vài con trâu đó:))
+) Với y = 2x + 3...
1.
\(\left\{{}\begin{matrix}x-2y-\sqrt{xy}=0\\\sqrt{x-1}-\sqrt{2y-1}=1\end{matrix}\right.\)
\(pt\left(1\right)\left(\sqrt{x}+\sqrt{y}\right)\left(\sqrt{x}-2\sqrt{y}\right)=0\\ \Leftrightarrow\left\{{}\begin{matrix}\sqrt{x}=-\sqrt{y}\\\sqrt{x}=\sqrt{2y}\end{matrix}\right.\)
cái đầu tiên loại vì x=y=0 không phải là nghiệm của hệ
suy ra x=2y thày vào pt(2) ta thấy 0 = 1 vô lý
vậy pt vô nghiệm
1/ \(\left\{{}\begin{matrix}x^3+y^3=1\left(1\right)\\x^2y+2xy^2+y^3=2\left(2\right)\end{matrix}\right.\)
Lấy (1). 2 - (2) ta được:
\(2x^3+y^3-x^2y-2xy^2=0\)
\(\Leftrightarrow\left(x-y\right)\left(x+y\right)\left(2x-y\right)=0\)
Đến đây dễ rồi nhé ^^
2/ Ta viết lại pt thứ 2 của hệ:
\(y^2-4\left(x+2\right)y+16+16x-5x^2=0\)
\(\Leftrightarrow y^2-4\left(x+2\right)y+4\left(x+2\right)^2-9x^2=0\)
\(\Leftrightarrow\left[y-2\left(x+2\right)\right]^2-\left(3x\right)^2=0\)
\(\Leftrightarrow\left(x+y-4\right)\left(y-5x-4\right)=0\)
Bạn làm tiếp nhé!
3/ Ta viết lại pt thứ nhất của hệ
\(x^2-x\left(2y-3\right)+y^2-3y-4=0\)
\(\Leftrightarrow x^2-x\left(2y-3\right)+\dfrac{4y^2-12y+9}{4}-\dfrac{25}{4}=0\)
\(\Leftrightarrow\left(x-\dfrac{2y+3}{2}\right)^2-\left(\dfrac{5}{2}\right)^2=0\)
\(\Leftrightarrow\left(x-y-4\right)\left(x-y+1\right)=0\)
Bạn làm tiếp được chứ?
4/ Viết lại pt thứ 2 của hệ
\(\left(y+\sqrt{x}\right)^2-\left(y\sqrt{x}\right)^2=0\)
\(\Leftrightarrow\left(y-\sqrt{x}-y\sqrt{x}\right)\left(y-\sqrt{x}+y\sqrt{x}\right)=0\)
ĐKXĐ: \(\left\{{}\begin{matrix}9y-5\ge0\\x+y\ge0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}y\ge\dfrac{5}{9}\\x+y\ge0\end{matrix}\right.\).
Phương trình (1) tương đương với:
\(\left(x^2+y^2\right)\left(x+y\right)-\left(x+y\right)+2xy=0\)
\(\Leftrightarrow\left(x^2+y^2\right)\left(x+y\right)-\left(x^2+y^2\right)+x^2+y^2-\left(x+y\right)+2xy=0\)
\(\Leftrightarrow\left(x^2+y^2\right)\left(x+y-1\right)+\left(x+y\right)^2-\left(x+y\right)=0\)
\(\Leftrightarrow\left(x^2+y^2\right)\left(x+y-1\right)+\left(x+y\right)\left(x+y-1\right)=0\)
\(\Leftrightarrow\left(x+y-1\right)\left(x^2+y^2+x+y\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x+y-1=0\\x^2+y^2+x+y=0\end{matrix}\right.\)
- Với \(x^2+y^2+x+y=0\) có \(x+y=0\) (theo điều kiện)
suy ra \(x=y=0\) (không thỏa mãn).
- Với \(x+y-1=0\Leftrightarrow y=1-x\) thế vào phương trình (2) ta được:
\(x^2+11x+6=2\sqrt{9\left(1-x\right)-5}+\sqrt{1}\)
\(\Leftrightarrow x^2+11x+5-2\sqrt{14-9x}=0\)
\(\Rightarrow\left(x^2+11x+5\right)^2=4\left(14-9x\right)\)
\(\Leftrightarrow x^4+22x^3+131x^2+146x-31=0\)
Bạn giải phương trình trên, thử lại ta được nghiệm của bài toán.
Đáp án ra số khá xấu nên thầy không ghi ra đây.
Em có thể tham khảo cách làm nhé.