\(\left\{{}\begin{matrix}2x^2+3xy+y^2=12\\x^2-xy+3y^2=11\end{matri...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

AH
Akai Haruma
Giáo viên
18 tháng 6 2019

Lời giải:
HPT \(\Rightarrow 11(2x^2+3xy+y^2)=12(x^2-xy+3y^2)\)

\(\Leftrightarrow 22x^2+33xy+11y^2=12x^2-12xy+36y^2\)

\(\Leftrightarrow 10x^2+45xy-25y^2=0\)

\(\Leftrightarrow 2x^2+9xy-5y^2=0(*)\)

Dễ thấy $y=0$ không phải một nghiệm của HPT. Đặt $x=ty$

\((*)\Leftrightarrow 2(ty)^2+9ty.y-5y^2=0\)

\(\Leftrightarrow y^2(2t^2+9t-5)=0\)

Vì $y\neq 0$ nên $2t^2+9t-5=0$

\(\Leftrightarrow (2t-1)(t+5)=0\Rightarrow \left[\begin{matrix} t=\frac{1}{2}\\ t=-5\end{matrix}\right.\)

Nếu \(t=\frac{1}{2}\Leftrightarrow 2x=y\)

Thay vào PT đầu tiên:

\(2x^2+3x.2x+4x^2=12\)

\(\Leftrightarrow x^2=1\Rightarrow x=\pm 1\Rightarrow y=\pm 2\) (tương ứng)

Nếu \(t=-5\Leftrightarrow x=-5y\)

Thay vào PT đầu tiên:

\(2(-5y)^2+3(-5y)y+y^2=12\)

\(\Leftrightarrow 36y^2=12\Leftrightarrow y^2=\frac{1}{3}\)

\(\Rightarrow y=\pm \sqrt{\frac{1}{3}}\Rightarrow x=\mp 5\sqrt{\frac{1}{3}}\) (tương ứng)

Vậy..........

AH
Akai Haruma
Giáo viên
20 tháng 6 2019

Lời giải:
HPT \(\Rightarrow 11(2x^2+3xy+y^2)=12(x^2-xy+3y^2)\)

\(\Leftrightarrow 22x^2+33xy+11y^2=12x^2-12xy+36y^2\)

\(\Leftrightarrow 10x^2+45xy-25y^2=0\)

\(\Leftrightarrow 2x^2+9xy-5y^2=0(*)\)

Dễ thấy $y=0$ không phải một nghiệm của HPT. Đặt $x=ty$

\((*)\Leftrightarrow 2(ty)^2+9ty.y-5y^2=0\)

\(\Leftrightarrow y^2(2t^2+9t-5)=0\)

Vì $y\neq 0$ nên $2t^2+9t-5=0$

\(\Leftrightarrow (2t-1)(t+5)=0\Rightarrow \left[\begin{matrix} t=\frac{1}{2}\\ t=-5\end{matrix}\right.\)

Nếu \(t=\frac{1}{2}\Leftrightarrow 2x=y\)

Thay vào PT đầu tiên:

\(2x^2+3x.2x+4x^2=12\)

\(\Leftrightarrow x^2=1\Rightarrow x=\pm 1\Rightarrow y=\pm 2\) (tương ứng)

Nếu \(t=-5\Leftrightarrow x=-5y\)

Thay vào PT đầu tiên:

\(2(-5y)^2+3(-5y)y+y^2=12\)

\(\Leftrightarrow 36y^2=12\Leftrightarrow y^2=\frac{1}{3}\)

\(\Rightarrow y=\pm \sqrt{\frac{1}{3}}\Rightarrow x=\mp 5\sqrt{\frac{1}{3}}\) (tương ứng)

Vậy..........

8 tháng 2 2017

\(\left(1\right)\Leftrightarrow\left(x-2y\right)\left(2x^2+y^2+1\right)=0\Leftrightarrow x=2y\).Thay vào (2) ta có phương trình \(\sqrt{4x^2+x+6}+2x=1+5\sqrt{x+1}\left(3\right)\)

\(\Leftrightarrow\sqrt{4x^2+x+6}-\left(1-2x\right)=5\sqrt{x+1}\Leftrightarrow\frac{x+1}{\sqrt{4x^2+x+6}+1-2x}=\sqrt{x+1}\)

\(\Leftrightarrow\left[\begin{matrix}x+1=0\Rightarrow x=-1\\\sqrt{4x^2+x+6}+1-2x=\sqrt{x+1}\left(4\right)\end{matrix}\right.\)

Kết hợp (3) và (4) ta được \(2\sqrt{x+1}=2x-1\Leftrightarrow\left\{\begin{matrix}x\ge\frac{1}{2}\\4x^2-8x+3=0\end{matrix}\right.\Leftrightarrow x=\frac{2+\sqrt{7}}{2}\)

P/S:Phương trình đã cho có 2 nghiệm :\(x=-1;x=\frac{2+\sqrt{7}}{2}\)

8 tháng 2 2017

a jỏi wá, k bit lên 12 e có làm dc k

8 tháng 12 2019

ĐKXĐ: \(x\ge0\)

Phương trình (1) \(\Leftrightarrow\frac{x}{\sqrt{x+1}+1}\left(\sqrt{y^2+1}+y\right)=\sqrt{x}\Leftrightarrow\left[{}\begin{matrix}\sqrt{x}=0\\\frac{\sqrt{x}\left(\sqrt{y^2+1}+y\right)}{\left(\sqrt{x+1}+1\right)}=1\left(3\right)\end{matrix}\right.\)

\(\sqrt{x}=0\Leftrightarrow x=0\Rightarrow y=-2\)

\(\left(3\right)\Rightarrow\left(\sqrt{y^2+1}-y\right)\left(\sqrt{x+1}+1\right)=\sqrt{x}=\left(\sqrt{y^2+1}+y\right)\left(\sqrt{x+1}-1\right)\Leftrightarrow\sqrt{y^2+1}=y\sqrt{x+1}\Rightarrow y^2+1=xy^2+y^2\Leftrightarrow xy^2=1\left(4\right)\)

Với y=0 hệ vô nghiệm

Với y khác 0 thay (4) vào pt 1 được \(\left(\sqrt{\frac{1}{y^2}+1}-1\right)\left(\sqrt{y^2+1}+y\right)=\sqrt{\frac{1}{y^2}}\\ \Leftrightarrow\left(\sqrt{y^2+1}-\left|y\right|\right)\left(\sqrt{y^2+1}+y\right)=1\left(5\right)\)

Với y<0 thì (5): \(\left(\sqrt{y^2+1}+y\right)^2=1\) vô nghiệm

Ta thấy (5) đúng với mọi y

Thay (4) vào pt (2) suy ra \(y^7+2y^6+y^5-2y^2-2=0\Leftrightarrow\left(y-1\right)\left(y^6+3y^5+4y^4+4y^3+4y^2+4y+2\right)=0\)

Phương trình này có nghiệm duy nhất là y=1 trên (0,dương VC)=>x=1

Vậy hệ có hai nghiệm là (1,1) và (0,-2)

9 tháng 2 2017

a)Giải phương trình

\(y=x\).ln \(x-2x\Rightarrow y\) = ln \(x-1\)

\(y=0\Leftrightarrow\) ln \(x-1=0\Leftrightarrow x=e\)

b)Giải hệ phương trình

\(\left\{\begin{matrix}2^{x+y}=64\\\log_2\left(x^2+y\right)=3\end{matrix}\right.\Leftrightarrow\left\{\begin{matrix}x+y=6\\x^2+y=8\end{matrix}\right.\)

Giải hệ \(\Rightarrow\left(2;4\right)\)\(\left(-1;7\right)\)

24 tháng 12 2017

\(4^{x^2-x}+2^{x^2-x+1}=3\)

<=> \(4^{x^2-x}+2^{x^2-x}.2=3\)

đặt \(2^{x^2-x}=t\) đk: t > 0

pttt: t2 + 2t - 3 = 0

=> \(\left[{}\begin{matrix}t=1\\t=-3\left(loại\right)\end{matrix}\right.\)

t = 1 <=> \(2^{x^2-x}=1\) <=> x2-x = 0

<=> \(\left[{}\begin{matrix}x=0\\x=1\end{matrix}\right.\)

24 tháng 12 2017

♥♥♥ ✌

6 tháng 4 2017

a) Đường thẳng d đi qua M1( -3 ; -2 ; 6) và có vectơ chỉ phương (2 ; 3 ; 4).

Đường thẳng d' đi qua M2( 5 ; -1 ; 20) và có vectơ chỉ phương (1 ; -4 ; 1).

Ta có = (19 ; 2 ; -11) ; = (8 ; 1 ; 14)

= (19.8 + 2 - 11.4) = 0

nên d và d' cắt nhau.

Nhận xét : Ta nhận thấy , không cùng phương nên d và d' chỉ có thể cắt nhau hoặc chéo nhau.

Xét hệ phương trình:

Từ (1) với (3), trừ vế với vế ta có 2t = 6 => t = -3, thay vào (1) có t' = -2, từ đó d và d' có điểm chung duy nhất M(3 ; 7 ; 18). Do đó dd' cắt nhau.

b) Ta có : (1 ; 1 ; -1) là vectơ chỉ phương của d(2 ; 2 ; -2) là vectơ chỉ phương của d' .

Ta thấy cùng phương nên d và d' chỉ có thể song song hoặc trùng nhau.

Lấy điểm M(1 ; 2 ; 3) ∈ d ta thấy M d' nên dd' song song.


NV
28 tháng 1 2019

Ta có \(x-\sqrt{x^2+4}\ne0\)\(y-\sqrt{y^2+1}\ne0\)

Nhân 2 vế của pt đầu cho \(x-\sqrt{x^2+4}\) ta được:

\(x-\sqrt{x^2+4}=-2\left(y+\sqrt{y^2+1}\right)\) (1)

Nhân 2 vế của pt đầu cho \(y-\sqrt{y^2+1}\) ta được:

\(x+\sqrt{x^2+4}=-2\left(y-\sqrt{y^2+1}\right)\) (2)

Cộng vế với vế của (1) và (2) ta được: \(2x=-4y\Rightarrow x=-2y\)

Biến đổi pt dưới 1 chút:

\(3\left(-2y\right)^2+5\left(-2y\right)+2=2\sqrt[3]{x^3+1}\)

\(\Leftrightarrow3x^2+5x+2=2\sqrt[3]{x^3+1}\)

\(\Leftrightarrow x^3+3x^2+3x+1+2\left(x+1\right)=x^3+1+2\sqrt[3]{x^3+1}\)

\(\Leftrightarrow\left(x+1\right)^3+2\left(x+1\right)=\left(\sqrt[3]{x^3+1}\right)^3+2\sqrt[3]{x^3+1}\)

Xét hàm \(f\left(t\right)=t^3+2t\), ta có \(f'\left(t\right)=3t^2+2>0\forall t\Rightarrow f\left(t\right)\) đồng biến

\(\Rightarrow f\left(t_1\right)=f\left(t_2\right)\Leftrightarrow t_1=t_2\)

\(\Rightarrow x+1=\sqrt[3]{x^3+1}\Leftrightarrow\left(x+1\right)^3=x^3+1\)

\(\Leftrightarrow x^3+3x^2+3x+1=x^3+1\Leftrightarrow x\left(x+1\right)=0\)

\(\Rightarrow\left[{}\begin{matrix}x=0\Rightarrow y=0\\x=-1\Rightarrow y=\dfrac{1}{2}\end{matrix}\right.\)

29 tháng 1 2019

thank you