\(\left\{{}\begin{matrix}17x+2y=2011\left|xy\right|\\x-2y=3xy\end{matrix}\...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

AH
Akai Haruma
Giáo viên
30 tháng 1 2018

Lời giải:

Xét 2 trường hợp sau:

TH1: \(xy\geq 0\Rightarrow |xy|=xy\)

HPT \(\Leftrightarrow \left\{\begin{matrix} 17x+2y=2011xy(1)\\ x-2y=3xy(2)\end{matrix}\right.\)

\((1)+(2)\Rightarrow 18x=2014xy\Leftrightarrow x(18-2014y)=0\)

\(\Leftrightarrow \left[\begin{matrix} x=0\\ y=\frac{9}{1007}\end{matrix}\right.\)

Nếu \(x=0\Rightarrow -2y=0\Leftrightarrow y=0\) (t/m)

Nếu \(y=\frac{9}{1007}\Rightarrow x-\frac{18}{1007}=\frac{27x}{1007}\Leftrightarrow x=\frac{9}{490}\) (t/m)

TH2: \(xy\leq 0\Rightarrow |xy|=-xy\)

HPT \(\Leftrightarrow \left\{\begin{matrix} 17x+2y=-2011xy\\ x-2y=3xy\end{matrix}\right.\)

\(\Rightarrow 18x=-2011xy+3xy=-2008xy\)

\(\Leftrightarrow x(18+2008y)=0\)

Nếu \(x=0\Rightarrow -2y=0\Rightarrow y=0\) (t/m)

Nếu \(y=-\frac{9}{1004}\Rightarrow x+\frac{18}{1004}=\frac{-27x}{1004}\Leftrightarrow x=-\frac{18}{1031}\) (không t/m)

Vậy \((x,y)=(0,0); (\frac{9}{490}, \frac{9}{1007})\)

8 tháng 7 2018

tại sao x=\(\dfrac{-18}{1031}\)ko thỏa mãn

26 tháng 8 2016

Chỉ cần áp dụng cái giá trị tuyệt đối là rara

4 tháng 2 2017

1) Từ đề bài => (17x + 2y)+(x - 2y) = 2011|xy|+3xy

<=> 18x = 2011|xy|+3xy (1)

Dễ thấy x = y = 0 là nghiệm của (1)

Bây giờ ta xét trường hợp x và y khác 0

+ Nếu xy < 0, từ (1) => 18x = -2011xy + 3xy

<=> 18x = -2008xy

<=> y = -1004/9

Thay vào x - 2y = 3xy ta được:

x - 2.(-1004/9) = 3.(-1004/9).x

<=> x = -2008/3021 (không TM xy < 0)

+ Nếu xy > 0, từ (1) => 18x = 2011xy + 3xy

<=> 18x = 2014xy

<=> y = 1007/9

Thay vào x - 2y = 3xy ta được:

x - 2.1007/9 = 3x.1007/9

<=> x = -1007/1506 (ko TM)

Vậy ...

4 tháng 2 2017

2. DKXD: \(x\ge0;y\ge z;z\ge x\)

\(\left(1\right)\Leftrightarrow2\sqrt{x}+2\sqrt{y-z}+2\sqrt{z-x}=y+3\)

\(\Leftrightarrow\left(x-2\sqrt{x}+1\right)+\left(y-z-2\sqrt{y-z}+1\right)+\left(z-x-2\sqrt{z-x}+1\right)=0\)

\(\Leftrightarrow\left(\sqrt{x}-1\right)^2+\left(\sqrt{y-z}-1\right)^2+\left(\sqrt{z-x}-1\right)^2=0\)

\(\Leftrightarrow\left\{\begin{matrix}\sqrt{x}-1=0\\\sqrt{y-z}-1=0\\\sqrt{z-x}-1=0\end{matrix}\right.\)

\(\Leftrightarrow\left\{\begin{matrix}x=1\\y=3\\z=2\end{matrix}\right.\)(TM DKXD)

KL: ...

9 tháng 11 2017

a) thay \(x^2y^2=2y^2-1\) vào PT (2):

\(\left(xy+1\right)\left(2y-x\right)=2x\left(2y^2-1\right)\)

\(\Leftrightarrow2xy^2-x^2y+2y-x=4xy^2-2x\)

\(\Leftrightarrow2xy^2-x+x^2y-2y=0\)

\(\Leftrightarrow\left(xy-1\right)\left(2y+x\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}xy=1\\x=-2y\end{matrix}\right.\)...

b)

NV
7 tháng 1 2024

- TH1: \(xy\ge0\Rightarrow\left|xy\right|=xy\)

Hệ trở thành: \(\left\{{}\begin{matrix}17x+2y=2011xy\\x-2y=3xy\end{matrix}\right.\)

Cộng vế: \(\Rightarrow18x=2014xy\Rightarrow2x\left(1007y-9\right)=0\)

\(\Rightarrow\left[{}\begin{matrix}x=0\Rightarrow y=0\\y=\dfrac{9}{1007}\Rightarrow x=\dfrac{9}{490}\end{matrix}\right.\) (đều thỏa mãn)

TH2: \(xy< 0\Rightarrow\left|xy\right|=-xy\)

Hệ trở thành: \(\left\{{}\begin{matrix}17x+2y=-2011xy\\x-2y=3xy\end{matrix}\right.\)

Cộng vế: \(18x=-2008xy\Rightarrow2x\left(9+1004y\right)=0\)

\(\Rightarrow\left[{}\begin{matrix}x=0\Rightarrow y=0\left(loại\right)\\y=-\dfrac{9}{1004}\Rightarrow x=-\dfrac{18}{1031}\left(loại\right)\end{matrix}\right.\)

12 tháng 9 2018

mấy bài dạng như này mk sẽ hướng dẩn nha .

a) ta có : \(\left\{{}\begin{matrix}\left(x+y-2\right)\left(2x-y\right)=0\\x^2+y^2=2\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}\left[{}\begin{matrix}x+y-2=0\\2x-y=0\end{matrix}\right.\\x^2+y^2=2\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}x+y-2=0\\x^2+y^2=2\end{matrix}\right.\\\left\{{}\begin{matrix}2x-y=0\\x^2+y^2=0\end{matrix}\right.\end{matrix}\right.\) \(\Rightarrow\) giải bằng cách thế bình thường nha

b) ta có : \(\left\{{}\begin{matrix}x^2+y^2+2x+2y=6\\x+y-3xy+1=0\end{matrix}\right.\) \(\Leftrightarrow2x^2+2y^2+6xy-5=0\)

\(\Leftrightarrow2\left(x+y\right)^2+2xy-5=0\) sài vi ét --> .......................

c) đây là phương trình đối xứng loại 1 , có trên mang nha .

câu d và e là phương trình đối xứng loại 2 , cũng có trên mạng nha .