\(\hept{\begin{cases}x+y+z=12\\ax+5y+4z=46\\5x+ay+3z=38\end{cases}}\)
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

23 tháng 4 2020

Từ pt 1 ta có thể biến đổi : \(ax+y+z=a^2\)

\(< =>a=\frac{ax+y+z}{a}\)

\(< =>x+y+z=a\)

\(< =>3x+3y+3z=x+ay+z\)

\(< =>2x+y\left(3-a\right)+2z=0\)

\(< =>2a+y-ay=0\)

\(< =>2a+y-ay-2=-2\)

\(< =>a\left(2-y\right)-\left(2-y\right)=-2\)

\(< =>\left(a-1\right)\left(2-y\right)=2.\left(-1\right)=-1.2=-2.1=1.\left(-2\right)\)

\(< =>\left(a;y\right)=\left(3;3\right)=\left(0;0\right)=\left(-1;1\right)=\left(2;4\right)\)

Bạn thay vào là đc :)) giải sai hay đúng cg ko bt nx :(

16 tháng 1 2022

Bó tay. com

17 tháng 1 2022
Ko biết sorry
7 tháng 1 2017

\(\hept{\begin{cases}ax+y+z=a^2\left(1\right)\\x+ay+z=3a\left(2\right)\\x+y+az=2\left(3\right)\end{cases}}\)

Lấy (1) + (2) + (3) vế theo vế được

\(\left(2+a\right)\left(x+y+z\right)=a^2+3a+2=\left(a+2\right)\left(a+1\right)\)

Với a = -2 thì

\(0.\left(x+y+z\right)=0\)bạn làm tiếp nhé

Với a # -2 thì

\(x+y+z=a+1\left(4\right)\)

Lấy (4) lần lược - cho (1), (2), (3) thì tìm được x,y,z

11 tháng 7 2017

câu a)

nhân cả 3 phương trình

ta được

\(x^2y^2z^2=6\left(x+y-z\right)\left(x-y+z\right)\left(y-x+z\right)\)

Vế trái là 1 số chính phương nên Vp cũng là số chính phương

6 không phải là số chính phương nên

\(\left(x+y-z\right)\left(x-y+z\right)\left(y-x+z\right)\)=6

lập bảng 

đặt x+y-z=1 ; x-y+z=2; y-x+z=3 giải ra và tương tự xét các cái còn lại (hơi lâu) nhớ xét thêm cái âm nữa

câu b)

từ hpt =>5y+3=11z+7

<=>\(y=\frac{11z+4}{5}\)>0 với mọi y;z thuộc R

y  nguyên dương nên (11z+4)thuộc bội(5) và z_min

=> z=1 

=> y=3

=> x =18 (t/m)

câu c)

qua pt (1) =>x=20-2y-3z

thay vao 2) <=> y+5z=23

y;z là nguyên dương mà 5z chia hêt cho 5 

=> z={1;2;3;4}

=> y={18;13;8;3}

=> x={-19;-12;-5;2} đoạn này bạn làm từng GT của z nhé

chọn x=2; y=3; z=4 (t/m)

Nếu có sai sót hãy báo lại qua gmail: tiendung230103@gmail.com

11 tháng 7 2017

Bạn giải nốt giùm mình câu a được ko?