\(\hept{\begin{cases}\sqrt{4x^2+3xy-7y^2}+4\left(x^2+5xy-6y^2\righ...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

29 tháng 10 2016

Đặt \(\hept{\begin{cases}\sqrt{4x^2+3xy-7y^2}=a\\\sqrt{3x^2-2xy-y^2}=b\end{cases}}\)

\(\Rightarrow a^2-b^2=x^2+5xy-6y^2\)

Từ đó ta có pt (1)

\(\Leftrightarrow a-b+4\left(a^2-b^2\right)=0\)

\(\Leftrightarrow\left(a-b\right)\left(1+4a+4b\right)=0\)

\(\Leftrightarrow\)a = b

\(\Leftrightarrow x^2+5xy-6y^2=0\)

\(\Leftrightarrow x^2-2xy+y^2+7xy-7y^2=0\)

\(\Leftrightarrow\left(x-y\right)\left(x+6y\right)=0\)

Tới đây thì bài toán đơn giản rồi bạn làm tiếp nhé

5 tháng 11 2017

   

a) 9x2 - 36

=(3x)2-62

=(3x-6)(3x+6)

=4(x-3)(x+3)

b) 2x3y-4x2y2+2xy3

=2xy(x2-2xy+y2)

=2xy(x-y)2

c) ab - b2-a+b

=ab-a-b2+b

=(ab-a)-(b2-b)

=a(b-1)-b(b-1)

=(b-1)(a-b)

P/s đùng để ý đến câu trả lời của mình

Dùng cái đầu đi ạ

10 tháng 5 2020

Cho e xin lời giải vs ạ

10 tháng 5 2020

Kaneki Ken

đk: \(x\ge0;y\ge0;x\ne-y\)

hpt \(\Leftrightarrow\)\(\hept{\begin{cases}2\sqrt{6x}\left(x+y+1\right)=4\sqrt{2}\left(x+y\right)\\\sqrt{7y}\left(x+y-1\right)=4\sqrt{2}\left(x+y\right)\end{cases}}\)

\(\Rightarrow\)\(2\sqrt{6x}\left(x+y+1\right)=\sqrt{7y}\left(x+y-1\right)\)

\(\Leftrightarrow\)\(\left(2\sqrt{6x}-\sqrt{7y}\right)\left(x+y+1\right)=0\)

... 

5 tháng 3 2019

Bn lên mạng hoặc vào câu hỏi tương tự nhé!

mk bận rồi!

k mk nha!

thanks!

haha!

10 tháng 5 2020

Trả lời :

Bn _♥Hàn_Thiên_Nhi♥Tiểu_La_Thành♥_ đừng bình luận linh tinh nhé !

- Hok tốt !

^_^

21 tháng 2 2019

Câu 1: ĐK: x khác -1/2, y khác -2

Đặt \(\sqrt[3]{\frac{2x+1}{y+2}}=t\) Từ phương trình thứ nhất ta có:

\(t+\frac{1}{t}=2\Leftrightarrow t^2-2t+1=0\Leftrightarrow t=1\)

=> \(\sqrt[3]{\frac{2x+1}{y+2}}=1\Leftrightarrow2x+1=y+2\Leftrightarrow2x-y=1\)

Vậy nên ta có hệ phương trình cơ bản: \(\hept{\begin{cases}2x-y=1\\4x+3y=7\end{cases}}\)Em làm tiếp nhé>

21 tháng 2 2019

\(1,ĐKXĐ:\hept{\begin{cases}y\ne-2\\x\ne-\frac{1}{2}\end{cases}}\)

Đặt \(\sqrt[3]{\frac{2x+1}{y+2}}=a\left(a\ne0\right)\)

\(Pt\left(1\right)\Leftrightarrow a+\frac{1}{a}=2\)

             \(\Leftrightarrow a^2+1=2a\)

             \(\Leftrightarrow\left(a-1\right)^2=0\)

            \(\Leftrightarrow a=1\)

           \(\Leftrightarrow\sqrt[3]{\frac{2x+1}{y+2}}=1\)