\(\hept{\begin{cases}\frac{xy}{x+y}=\frac{6}{5}\\\frac{yz}{y+z}=\f...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

24 tháng 10 2018

H/d nè:\(\frac{xy}{x+y}=\frac{6}{5}\Rightarrow\frac{x+y}{xy}=\frac{5}{6}\Rightarrow\frac{1}{x}+\frac{1}{y}=\frac{5}{6}\)

Tương tự 2 cái còn lại:....

Sau đó cộng 3 cái lại tìm được:\(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\) rồi trừ đi các vế tìm x,y,z

30 tháng 11 2019

\(\Leftrightarrow\hept{\begin{cases}\frac{x+y}{xy}=\frac{5}{12}\\\frac{y+z}{yz}=\frac{5}{18}\\\frac{z+x}{zx}=\frac{13}{36}\end{cases}}\)\(\Leftrightarrow\hept{\begin{cases}\frac{1}{y}+\frac{1}{x}=\frac{5}{12}\left(1\right)\\\frac{1}{z}+\frac{1}{y}=\frac{5}{18}\left(2\right)\\\frac{1}{z}+\frac{1}{x}=\frac{13}{36}\left(3\right)\end{cases}}\)

Cộng vế với vế,ta được: \(2\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right)=\frac{19}{18}\)\(\Leftrightarrow\frac{1}{x}+\frac{1}{y}+\frac{1}{z}=\frac{19}{36}\)(4)

Từ (1) và (4) suy ra : \(\frac{1}{z}=\frac{1}{9}\Rightarrow z=9\)

từ (2) và (4) suy ra : \(\frac{1}{x}=\frac{1}{4}\Rightarrow x=4\)

từ (3) và (4) suy ra: \(\frac{1}{y}=\frac{1}{6}\Rightarrow y=6\)

23 tháng 2 2020

bạn nghịch đảo lên sau đó đặt ẩn phụ là giải được

thiếu 1 pt nữa

16 tháng 8 2017

Bài này đúng đề. Không biết giải thì im.

15 tháng 11 2018

a/ Đảo ngược lại rồi đặc \(\frac{1}{x}=a;\frac{1}{y}=b;\frac{1}{z}=c\)

15 tháng 11 2018

b/ Dễ thấy vai trò x, y, z như nhau nên ta chỉ cần xét 1 trường hợp tiêu biểu thôi.

Xét \(x>y>z\)

\(\Rightarrow\frac{1}{x}< \frac{1}{y}< \frac{1}{z}\)

\(\Rightarrow x+\frac{1}{y}>z+\frac{1}{x}\)(trái giả thuyết)

\(\Rightarrow x=y=z\)'

\(\Rightarrow x+\frac{1}{x}=2\)

\(\Leftrightarrow x=1\)

21 tháng 1 2018

Ta có nếu x=0 hoặc y=0 hoặc z=0 thì hpt vô nghiệm. Vậy x,y,z khác 0

\(\hept{\begin{cases}\frac{xy}{x+y}=\frac{6}{5}\\\frac{yz}{y+z}=\frac{4}{3}\\\frac{zx}{z+x}=\frac{12}{7}\end{cases}}\)nghịch đảo ta có (nghịch đảo đc vì x,y,z khác 0)\(\hept{\begin{cases}\frac{x+y}{xy}=\frac{5}{6}\\\frac{y+z}{yz}=\frac{3}{4}\\\frac{z+x}{xz}=\frac{7}{12}\end{cases}}\)<=>\(\hept{\begin{cases}\frac{1}{x}+\frac{1}{y}=\frac{5}{6}\\\frac{1}{y}+\frac{1}{z}=\frac{3}{4}\\\frac{1}{z}+\frac{1}{x}=\frac{7}{12}\end{cases}}\)

Đặt a=\(\frac{1}{x}\),b=\(\frac{1}{y}\),c=\(\frac{1}{z}\)ta có \(\hept{\begin{cases}a+b=\frac{5}{6}\\b+c=\frac{3}{4}\\c+a=\frac{7}{12}\end{cases}}\) <=>\(\hept{\begin{cases}a+b+c=\left(\frac{5}{6}+\frac{3}{4}+\frac{7}{12}\right):2\\b=\frac{5}{6}-a\\c=\frac{7}{12}-a\end{cases}}\)

Thay vào giải ta có \(a+b+c=\frac{13}{12}\)

\(a+\frac{5}{6}-a+\frac{7}{12}-a=\frac{13}{12}\) => \(a=\frac{1}{3}\)=>\(x=3\)

tiếp tục tìm đc \(b=\frac{1}{2}\)=>\(y=2\)

                      \(c=\frac{1}{4}\)=>\(z=4\)

Vậy nghiệm hpt là \(\hept{\begin{cases}x=3\\y=2\\z=4\end{cases}}\)

18 tháng 1 2018

Đặt \(M=\hept{\begin{cases}\frac{xy}{x+y}=\frac{6}{5}\\\frac{yz}{y+z}=\frac{4}{3}\\\frac{zx}{z+x}=\frac{12}{7}\end{cases}}\)

Ta có: \(\frac{xy}{x+y}=\frac{6}{5}\Leftrightarrow xy=6\&x+y=5\)

\(\Rightarrow x=5-6=\left(-1\right)\)

     \(\frac{yz}{y+z}=\frac{4}{3}\Leftrightarrow yz=4\&y+z=3\)

\(\Rightarrow y=3-4=\left(-1\right)\)

\(\frac{zx}{z+x}=\frac{12}{7}\Leftrightarrow zx=12;z+x=7\Rightarrow z=7-12=-5\)

\(\Rightarrow\hept{\begin{cases}x=-1\\y=-1\\z=-5\end{cases}}\)

18 tháng 1 2017

pt 1) x=y=z  Cosi 3 số 

20 tháng 2 2019

a) \(\hept{\begin{cases}\left(x-1\right)\left(2x+y\right)=0\\\left(y+1\right)\left(2y-x\right)=0\end{cases}}\)
\(\cdot x=1\Rightarrow\hept{\begin{cases}0=0\\\left(y+1\right)\left(2y-1\right)=0\end{cases}}\Leftrightarrow\hept{\begin{cases}0=0\\y=-1;y=\frac{1}{2}\end{cases}}\)
\(\cdot y=-1\Rightarrow\hept{\begin{cases}\left(x-1\right)\left(2x-1\right)=0\\0=0\end{cases}}\Leftrightarrow\hept{\begin{cases}x=1;x=\frac{1}{2}\\0=0\end{cases}}\)
\(\cdot x=2y\Rightarrow\hept{\begin{cases}\left(2y-1\right)5y=0\\0=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}y=0\Rightarrow x=0\\y=\frac{1}{2}\Rightarrow x=1\end{cases}}\)
\(y=-2x\Rightarrow\hept{\begin{cases}0=0\\\left(1-2x\right)5x=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=\frac{1}{2}\Rightarrow y=-1\\x=0\Rightarrow y=0\end{cases}}\)

b) \(\hept{\begin{cases}x+y=\frac{21}{8}\\\frac{x}{y}+\frac{y}{x}=\frac{37}{6}\end{cases}\Leftrightarrow\hept{\begin{cases}x=\frac{21}{8}-y\\\left(\frac{21}{8}-y\right)^2+y^2=\frac{37}{6}y\left(\frac{21}{8}-y\right)\end{cases}}}\)

\(\Leftrightarrow\hept{\begin{cases}x=\frac{21}{8}-y\\2y^2-\frac{21}{4}y+\frac{441}{64}=-\frac{37}{6}y^2+\frac{259}{16}y\end{cases}}\)\(\Leftrightarrow\hept{\begin{cases}x=\frac{21}{8}-y\\1568y^2-4116y+1323=0\end{cases}}\)\(\Leftrightarrow\hept{\begin{cases}x=\frac{3}{8}\\y=\frac{9}{4}\end{cases}}hay\hept{\begin{cases}x=\frac{9}{4}\\y=\frac{3}{8}\end{cases}}\)

c) \(\hept{\begin{cases}\frac{1}{x}+\frac{1}{y}+\frac{1}{z}=2\\\frac{2}{xy}-\frac{1}{z^2}=4\end{cases}\Leftrightarrow\hept{\begin{cases}\frac{1}{z^2}=\left(2-\frac{1}{x}-\frac{1}{y}\right)^2\\\frac{1}{z^2}=\frac{2}{xy}-4\end{cases}}}\)\(\Leftrightarrow\hept{\begin{cases}\left(2xy-x-y\right)^2=-4x^2y^2+2xy\\\frac{1}{z^2}=\frac{2}{xy}-4\end{cases}}\)\(\Leftrightarrow\hept{\begin{cases}8x^2y^2-4x^2y-4xy^2+x^2+y^2-2xy+2xy=0\\\frac{1}{z^2}=\frac{2}{xy}-4\end{cases}}\)\(\Leftrightarrow\hept{\begin{cases}4x^2y^2-4x^2y+x^2+4x^2y^2-4xy^2+y^2=0\\\frac{1}{z^2}=\frac{2}{xy}-4\end{cases}}\)\(\Leftrightarrow\hept{\begin{cases}\left(2xy-x\right)^2+\left(2xy-y\right)^2=0\\\frac{1}{z^2}=\frac{2}{xy}-4\end{cases}}\)\(\Leftrightarrow\hept{\begin{cases}x=y=\frac{1}{2}\\z=\frac{-1}{2}\end{cases}}\)
d) \(\hept{\begin{cases}xy+x+y=71\\x^2y+xy^2=880\end{cases}}\). Đặt \(\hept{\begin{cases}x+y=S\\xy=P\end{cases}}\), ta có: \(\hept{\begin{cases}S+P=71\\SP=880\end{cases}}\Leftrightarrow\hept{\begin{cases}S=71-P\\P\left(71-P\right)=880\end{cases}}\Leftrightarrow\hept{\begin{cases}S=71-P\\P^2-71P+880=0\end{cases}}\)\(\Leftrightarrow\hept{\begin{cases}S=16\\P=55\end{cases}}hay\hept{\begin{cases}S=55\\P=16\end{cases}}\)
\(\cdot\hept{\begin{cases}S=16\\P=55\end{cases}}\Leftrightarrow\hept{\begin{cases}x+y=16\\xy=55\end{cases}}\Leftrightarrow\hept{\begin{cases}x=16-y\\y\left(16-y\right)=55\end{cases}}\Leftrightarrow\hept{\begin{cases}x=16-y\\y^2-16y+55=0\end{cases}}\)\(\Leftrightarrow\hept{\begin{cases}x=5\\y=11\end{cases}}hay\hept{\begin{cases}x=11\\y=5\end{cases}}\)

\(\cdot\hept{\begin{cases}S=55\\P=16\end{cases}}\Leftrightarrow\hept{\begin{cases}x+y=55\\xy=16\end{cases}}\Leftrightarrow\hept{\begin{cases}x=55-y\\y\left(55-y\right)=16\end{cases}}\Leftrightarrow\hept{\begin{cases}x=55-y\\y^2-55y+16=0\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}x=\frac{55-3\sqrt{329}}{2}\\y=\frac{55+3\sqrt{329}}{2}\end{cases}}hay\hept{\begin{cases}x=\frac{55+3\sqrt{329}}{2}\\y=\frac{55-3\sqrt{329}}{2}\end{cases}}\)

e) \(\hept{\begin{cases}x\sqrt{y}+y\sqrt{x}=12\\x\sqrt{x}+y\sqrt{y}=28\end{cases}}\). Đặt \(\hept{\begin{cases}S=\sqrt{x}+\sqrt{y}\\P=\sqrt{xy}\end{cases}}\), ta có \(\hept{\begin{cases}SP=12\\P\left(S^2-2P\right)=28\end{cases}}\Leftrightarrow\hept{\begin{cases}S=\frac{12}{P}\\P\left(\frac{144}{P^2}-2P\right)=28\end{cases}}\Leftrightarrow\hept{\begin{cases}S=\frac{12}{P}\\2P^4+28P^2-144P=0\end{cases}}\)
Tự làm tiếp nhá! Đuối lắm luôn