\(\hept{\begin{cases}2x+2y=10-2xy\\x^2+y^2=5\end{cases}}\)

GI...">

K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

9 tháng 2 2019

\(\hept{\begin{cases}2x+2y=10-2xy\\x^2+y^2=5\end{cases}}\)

\(\Rightarrow x^2+y^2-10+2xy=5-2\left(x+y\right)\Leftrightarrow\left(x+y\right)\left(x+y\right)-10=5-2\left(x+y\right)\)

\(\text{Đặt: x+y=a}\)

\(a^2-10=5-2a\Rightarrow a^2-10-5+2a=0\Rightarrow a^2+2a-15=0\)

\(\)\(\Leftrightarrow a^2+2a+1=16\Leftrightarrow a+1=\pm4\Leftrightarrow\orbr{\begin{cases}a=-5\\a=3\end{cases}}\)

\(+,a=-5\Rightarrow x+y=-5\)

\(\Rightarrow xy=10\Rightarrow x^2+y^2+10-2xy=0\Rightarrow\left(x-y\right)^2=-10\left(\text{loại}\right)\)

\(+,a=3\Rightarrow x+y=3\Rightarrow xy=2\)

\(\Rightarrow x^2+y^2+10-2xy=11\Rightarrow\left(x-y\right)\left(x-y\right)=1\Rightarrow x-y=\pm1\)

\(\text{Giả sử: x ít nhất bằng y}\)

\(\Rightarrow x-y=1\Rightarrow\hept{\begin{cases}x=2\\y=1\end{cases}}\)

\(y\ge x\Rightarrow\hept{\begin{cases}y=2\\x=1\end{cases}}\)

đến đây thì ez rồi

15 tháng 3 2020

hãy dùng cái đầu bạn nhé :))))

\(a,\hept{\begin{cases}\left(x-y\right)^2=1\\2x^2+2y^2-2xy-y=0\end{cases}}\)

Xét từng TH với x-y=1 và x-y=-1

\(b,\hept{\begin{cases}\left(x-1\right)\left(y+2\right)=0\\xy-3x+2y=0\end{cases}}\)

Xét từng TH x=1 và y=-2

Dùng cái đầu đi ạ

31 tháng 3 2018

\(\hept{\begin{cases}\frac{x^2+1}{y}=\frac{y^2+1}{y}\left(1\right)\\x^2+3y^2=4\left(2\right)\end{cases}}\)

ĐK \(x,y\ne0\)

   Từ     \(\frac{y^2+1}{y}=\frac{x^2+1}{x}\Leftrightarrow xy^2+x=x^2y+y\Leftrightarrow\left(xy-1\right)\left(x-y\right)=0\)

           \(\Leftrightarrow\hept{\begin{cases}x=y\\xy=1\end{cases}}\)

+ thay  \(x=y\)vào (2) ta dc ..................

+xy=1 suy ra 1=1/y thay vao 2 ta dc............

7 tháng 1 2019

câu 1 bạn có cho đề sai ko :

bạn có thể kham khảo bài ;

https://olm.vn/hoi-dap/detail/203671433762.html

10 tháng 4 2019

\(\hept{\begin{cases}\left(x+1\right)\left(2y+3\right)=5\\\left(x+2\right)\left(3y-1\right)=-4\end{cases}\Rightarrow x+1=\frac{5}{2y+3}\Leftrightarrow x+2=\frac{8+2y}{2y+3}}\)

\(\Leftrightarrow\left(x+2\right)\left(3y-1\right)=\left(\frac{8+2y}{2y+3}\right)\left(3y-1\right)=-4\)

\(\Leftrightarrow\left(8+2y\right)\left(3y-1\right)=-8y-12\\ \Leftrightarrow6y^2+30y+4=0\)

\(\Rightarrow\orbr{\begin{cases}y=\frac{-15+\sqrt{201}}{6}\\y=\frac{-15-\sqrt{201}}{6}\end{cases}}\Rightarrow\orbr{\begin{cases}x=\frac{-83-5\sqrt{201}}{8}\\x=\frac{-83+5\sqrt{201}}{8}\end{cases}}\)

10 tháng 4 2019

cảm ơn nha! mk bt cách làm rùi nhưng mà bạn tính x sai mất rùi! dù sao cũng camon nhìu lắm!!! ^ ^

11 tháng 1 2017

\(\hept{\begin{cases}2m^2x+3\left(m-1\right)y=3\\m\left(x+y\right)-2y=2\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}2m^2x+3\left(m-1\right)y=3\\y\left(m-2\right)=2-mx\end{cases}}\)

Với m = 2 thì hệ trở thành

\(\hept{\begin{cases}8x+3y=3\\2-2x=0\end{cases}\Leftrightarrow}\hept{\begin{cases}x=1\\y=\frac{-5}{3}\end{cases}}\)

Với \(m\ne2\)thì

\(\Leftrightarrow\hept{\begin{cases}2m^2x+3\left(m-1\right).\frac{2-mx}{\left(m-2\right)}=3\left(1\right)\\y=\frac{2-mx}{\left(m-2\right)}\left(2\right)\end{cases}}\)

Từ (1) ta có

\(\left(2m^3-7m^2+3m\right)x=-3m\)

Với \(\hept{\begin{cases}2m^3-7m^2+3m=0\\-3m=0\end{cases}}\Leftrightarrow m=0\)

Thì phương trình có vô số nghiệm (x,y) thõa y = - 1; x tùy ý

Với \(\hept{\begin{cases}2m^3-7m^2+3m=0\\-3m\ne0\end{cases}}\Leftrightarrow\orbr{\begin{cases}m=\frac{1}{2}\\m=3\end{cases}}\)

Thì hệ pt vô nghiệm

Với \(\hept{\begin{cases}2m^3-7m^2+3m\ne0\\-3m\ne0\end{cases}}\Leftrightarrow m\ne0;0,5;3\)

Thì hệ có nghiệm là

\(\hept{\begin{cases}x=\frac{3-3\left(m-1\right).\frac{2-mx}{\left(m-2\right)}}{2m^2}\\y=\frac{2-mx}{\left(m-2\right)}\end{cases}}\)

10 tháng 1 2017

\(\hept{\begin{cases}2m^2x+3\left(m-1\right)y=3\\m\left(x+y\right)-2y=2\end{cases}}\)

Với m = 2 thì e giải nhé

Với m khác 2 thì

\(\Leftrightarrow\hept{\begin{cases}2m^2x+3\left(m-1\right).\frac{2-mx}{m-2}=3\left(1\right)\\y=\frac{2-mx}{m-2}\left(2\right)\end{cases}}\)

Xét (1) quy đồng rồi chuyển cái có x sang 1 vế phần còn lại sang 1 vế. Rồi biện luận nhé 

6 tháng 6 2017

\(\Leftrightarrow\hept{\begin{cases}\left(x^2+y^2\right)^2=-4z^2+9z-5\\\left(x-y\right)^2=4z-5\end{cases}}\)ta dễ thấy để hai phương trình có ng thì vế phải của 2 phương trình phải dương nên có hệ điều kiện :

\(\Rightarrow\hept{\begin{cases}-4z^2+9z-5\ge0\\4z-5\ge0\end{cases}}\Leftrightarrow\hept{\begin{cases}\left(4z-5\right)\left(1-z\right)\ge0\\z\ge\frac{5}{4}\end{cases}}\)

  • TH1 : \(\hept{\begin{cases}4z-5\ge0\\1-z\ge0\\z\ge\frac{5}{4}\end{cases}}\Leftrightarrow\hept{\begin{cases}z\ge\frac{5}{4}\\z\le1\\z\ge\frac{5}{4}\end{cases}}\left(vn\right)\)
  • TH2: \(\hept{\begin{cases}4z-5\le0\\1-z\le0\\4z-5\ge0\end{cases}\Leftrightarrow\hept{\begin{cases}z\le\frac{5}{4}\\z\ge1\\z\ge\frac{5}{4}\end{cases}}\Leftrightarrow z=\frac{5}{4}}\)

      Ta thế \(Z=\frac{5}{4}\)vào ta có hệ \(\hept{\begin{cases}\left(x^2+y^2\right)^2=0\\\left(x-y\right)^2=0\end{cases}}\Leftrightarrow\hept{\begin{cases}x^2+y^2=0\\x-y=0\end{cases}\Leftrightarrow x=y=0}\)

Kết luận nghiệm \(\left(x,y,z\right)=\left(0;0;\frac{5}{4}\right)\)

5 tháng 4 2020

\(\hept{\begin{cases}x^2-2y^2=-1\left(1\right)\\2x^3-y^3=2y-x\end{cases}}\)

\(\Rightarrow\left(2x^3-y^2\right)\cdot1=\left(x^2-2y^2\right)\left(2y-x\right)\)(nhân chéo 2 vế để cùng bậc)

\(\Rightarrow2x^3-y^3=2x^2y-x^3-4y^3+2xy^2\)

\(\Rightarrow3x^3-2x^2y-2xy^2+3y^3=0\)

\(\Rightarrow3\left(x+y\right)\left(x^2-xy+y^2\right)-2xy\left(x+y\right)=0\)

\(\Rightarrow\left(x+y\right)\left(3x^2-5xy+3y^2\right)=0\)

\(\Rightarrow\orbr{\begin{cases}x+y=0\\x=y=0\end{cases}\Rightarrow x=-y}\)

Thay x=-y vào (1): \(x^2-2x^2=-1\Rightarrow x^2=1\Rightarrow\orbr{\begin{cases}x=1\Rightarrow y=-1\\x=-1\Rightarrow y=1\end{cases}}\)