\(\hept{\begin{cases}2x^2+xy-y^2-5x+y+2=0\\x^2+y^2+x+y-4=0\end{case...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

14 tháng 5 2020

Ta xét hệ \(\hept{\begin{cases}2x^2+xy-y^2-5x+y+2=0\left(1\right)\\x^2+y^2+x+y-4=0\left(2\right)\end{cases}}\)

Ta có: \(\left(1\right)\Leftrightarrow y^2-\left(x+1\right)y-2x^2+5x-2=0\)

\(\Leftrightarrow\left[y-\frac{x+1}{2}\right]^2-\left[\frac{\left(x+1\right)^2}{4}+2x^2-5x+2\right]=0\)

\(\Leftrightarrow\left[y-\frac{x+1}{2}\right]^2-\frac{9x^2-18x+9}{4}=0\)\(\Leftrightarrow\left[y-\frac{x+1}{2}\right]^2-\left(\frac{3x-3}{2}\right)^2=0\)

\(\Leftrightarrow\left(y-\frac{x+1}{2}-\frac{3x-3}{2}\right)\left(y-\frac{x+1}{2}+\frac{3x-3}{2}\right)=0\)\(\Leftrightarrow\left(y-2x+1\right)\left(y+x-2\right)=0\Leftrightarrow\orbr{\begin{cases}y-2x+1=0\\y+x-2=0\end{cases}}\)\(\Leftrightarrow\orbr{\begin{cases}y=2x-1\\y=2-x\end{cases}}\)

TH1: \(y=2x-1\), thay vào phương trình (2), ta được: \(x^2+\left(2x-1\right)^2+x+2x-1-4=0\)

\(\Leftrightarrow5x^2-x-4=0\Leftrightarrow\orbr{\begin{cases}x=1\Rightarrow y=1\\x=-\frac{4}{5}\Rightarrow y=\frac{-13}{5}\end{cases}}\)

TH2: \(y=2-x\), thay vào phương trình (2), ta được: \(x^2+\left(2-x\right)^2+x+2-x-4=0\)

\(\Leftrightarrow2x^2-4x+2=0\Leftrightarrow2\left(x-1\right)^2=0\Leftrightarrow x=1\Rightarrow y=1\)

Vậy hệ có 2 nghiệm \(\left(x;y\right)\in\left\{\left(1;1\right);\left(-\frac{4}{5};-\frac{13}{5}\right)\right\}\)

\(+,2x^2+xy-y^2-5x+y+2=0\)

\(\Leftrightarrow x^2+\frac{xy}{2}-\frac{y^2}{2}-\frac{5x}{2}+\frac{y}{2}+1=0\)

\(\Leftrightarrow x^2+x\left(\frac{y}{2}-\frac{5}{2}\right)-\frac{y^2}{2}+\frac{y}{2}+1=0\)

\(\Leftrightarrow x^2+2x.\frac{y-5}{4}+\left(\frac{y-5}{4}\right)^2-\left(\frac{y-5}{4}\right)^2-\frac{y^2}{2}+\frac{y}{2}+1=0\)

\(\Leftrightarrow\left(x+\frac{y-5}{4}\right)^2-\frac{y^2-10y+25}{16}-\frac{y^2}{2}+\frac{y}{2}+1=0\)

\(\Leftrightarrow\left(x+\frac{y-5}{4}\right)^2-\frac{9y^2-18y+9}{16}=0\)

\(\Leftrightarrow\left(x+\frac{y-5}{4}\right)^2-\left(\frac{3y-3}{4}\right)^2=0\)

\(\Leftrightarrow\left(x+\frac{y-5}{4}-\frac{3y-3}{4}\right)\left(x+\frac{y-5}{4}+\frac{3y-3}{4}\right)=0\)

\(\Leftrightarrow\left(x+\frac{-y-1}{2}\right)\left(x+y+2\right)=0\)

\(\orbr{\begin{cases}x=\frac{y+1}{2}\\x=-y-2\end{cases}}\)

vậy ....

8 tháng 5 2020

\(\hept{\begin{cases}2x^2+xy-y^2-5x+y+2=0\\x^2+y^2+x+y-4=0\end{cases}\Leftrightarrow\hept{\begin{cases}y^2-\left(x+1\right)y-2x^2+5x-2=0\\x^2+y^2+x+y-4=0\end{cases}}}\)

\(\Leftrightarrow\hept{\begin{cases}\left(y+x-2\right)\left(y-2x+1\right)=0\\x^2+y^2+x+y-4=0\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}y+x-2=0\\x^2+y^2+x+y-4=0\end{cases}}\)hoặc \(\hept{\begin{cases}y-2x+1=0\\x^2+y^2+x+y-4=0\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}x=1\\y=1\end{cases}}\)hoặc \(\hept{\begin{cases}x=\frac{-4}{5}\\y=\frac{-13}{5}\end{cases}}\)và \(\hept{\begin{cases}x=1\\y=1\end{cases}}\)

Vậy hpt có 2 nghiệm (x;y)=\(\left(1;1\right);\left(\frac{-4}{5};\frac{-13}{5}\right)\)

8 tháng 5 2020

ffffffffffffffffffff

9 tháng 2 2019

\(\hept{\begin{cases}2x^2+xy-y^2-5x+y+2=0\\x^2+y^2+x+y-4=0\end{cases}}\)

\(\Leftrightarrow2x^2+xy-y^2-5x+y+2=x^2+y^2+x+y-4\)

\(\Leftrightarrow x^2+xy-y^2-5x+y+2=y^2+x+y-4\)

\(\Leftrightarrow x^2+xy-y^2-5x+y=y^2+x+y-4-2\)

\(\Leftrightarrow x^2+xy-y^2-5x+y=y^2+x+y-6\)

\(\Leftrightarrow x^2+xy-y^2+y=y^2+x+y-6+5x\)

\(\Leftrightarrow x^2+xy-y^2+y=y^2+6x+y-6\)

\(\Leftrightarrow x^2+xy-y^2=y^2+6x-6\)

\(\Leftrightarrow x^2+xy=y^2+6x-6+y^2\)

\(\Leftrightarrow x^2+xy=2y^2+6x-6\)

\(\Leftrightarrow x\left(x+y\right)=2\left(y^2+3x-3\right)\)

15 tháng 3 2020

hãy dùng cái đầu bạn nhé :))))

\(a,\hept{\begin{cases}\left(x-y\right)^2=1\\2x^2+2y^2-2xy-y=0\end{cases}}\)

Xét từng TH với x-y=1 và x-y=-1

\(b,\hept{\begin{cases}\left(x-1\right)\left(y+2\right)=0\\xy-3x+2y=0\end{cases}}\)

Xét từng TH x=1 và y=-2

20 tháng 2 2019

a) \(\hept{\begin{cases}\left(x-1\right)\left(2x+y\right)=0\\\left(y+1\right)\left(2y-x\right)=0\end{cases}}\)
\(\cdot x=1\Rightarrow\hept{\begin{cases}0=0\\\left(y+1\right)\left(2y-1\right)=0\end{cases}}\Leftrightarrow\hept{\begin{cases}0=0\\y=-1;y=\frac{1}{2}\end{cases}}\)
\(\cdot y=-1\Rightarrow\hept{\begin{cases}\left(x-1\right)\left(2x-1\right)=0\\0=0\end{cases}}\Leftrightarrow\hept{\begin{cases}x=1;x=\frac{1}{2}\\0=0\end{cases}}\)
\(\cdot x=2y\Rightarrow\hept{\begin{cases}\left(2y-1\right)5y=0\\0=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}y=0\Rightarrow x=0\\y=\frac{1}{2}\Rightarrow x=1\end{cases}}\)
\(y=-2x\Rightarrow\hept{\begin{cases}0=0\\\left(1-2x\right)5x=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=\frac{1}{2}\Rightarrow y=-1\\x=0\Rightarrow y=0\end{cases}}\)

b) \(\hept{\begin{cases}x+y=\frac{21}{8}\\\frac{x}{y}+\frac{y}{x}=\frac{37}{6}\end{cases}\Leftrightarrow\hept{\begin{cases}x=\frac{21}{8}-y\\\left(\frac{21}{8}-y\right)^2+y^2=\frac{37}{6}y\left(\frac{21}{8}-y\right)\end{cases}}}\)

\(\Leftrightarrow\hept{\begin{cases}x=\frac{21}{8}-y\\2y^2-\frac{21}{4}y+\frac{441}{64}=-\frac{37}{6}y^2+\frac{259}{16}y\end{cases}}\)\(\Leftrightarrow\hept{\begin{cases}x=\frac{21}{8}-y\\1568y^2-4116y+1323=0\end{cases}}\)\(\Leftrightarrow\hept{\begin{cases}x=\frac{3}{8}\\y=\frac{9}{4}\end{cases}}hay\hept{\begin{cases}x=\frac{9}{4}\\y=\frac{3}{8}\end{cases}}\)

c) \(\hept{\begin{cases}\frac{1}{x}+\frac{1}{y}+\frac{1}{z}=2\\\frac{2}{xy}-\frac{1}{z^2}=4\end{cases}\Leftrightarrow\hept{\begin{cases}\frac{1}{z^2}=\left(2-\frac{1}{x}-\frac{1}{y}\right)^2\\\frac{1}{z^2}=\frac{2}{xy}-4\end{cases}}}\)\(\Leftrightarrow\hept{\begin{cases}\left(2xy-x-y\right)^2=-4x^2y^2+2xy\\\frac{1}{z^2}=\frac{2}{xy}-4\end{cases}}\)\(\Leftrightarrow\hept{\begin{cases}8x^2y^2-4x^2y-4xy^2+x^2+y^2-2xy+2xy=0\\\frac{1}{z^2}=\frac{2}{xy}-4\end{cases}}\)\(\Leftrightarrow\hept{\begin{cases}4x^2y^2-4x^2y+x^2+4x^2y^2-4xy^2+y^2=0\\\frac{1}{z^2}=\frac{2}{xy}-4\end{cases}}\)\(\Leftrightarrow\hept{\begin{cases}\left(2xy-x\right)^2+\left(2xy-y\right)^2=0\\\frac{1}{z^2}=\frac{2}{xy}-4\end{cases}}\)\(\Leftrightarrow\hept{\begin{cases}x=y=\frac{1}{2}\\z=\frac{-1}{2}\end{cases}}\)
d) \(\hept{\begin{cases}xy+x+y=71\\x^2y+xy^2=880\end{cases}}\). Đặt \(\hept{\begin{cases}x+y=S\\xy=P\end{cases}}\), ta có: \(\hept{\begin{cases}S+P=71\\SP=880\end{cases}}\Leftrightarrow\hept{\begin{cases}S=71-P\\P\left(71-P\right)=880\end{cases}}\Leftrightarrow\hept{\begin{cases}S=71-P\\P^2-71P+880=0\end{cases}}\)\(\Leftrightarrow\hept{\begin{cases}S=16\\P=55\end{cases}}hay\hept{\begin{cases}S=55\\P=16\end{cases}}\)
\(\cdot\hept{\begin{cases}S=16\\P=55\end{cases}}\Leftrightarrow\hept{\begin{cases}x+y=16\\xy=55\end{cases}}\Leftrightarrow\hept{\begin{cases}x=16-y\\y\left(16-y\right)=55\end{cases}}\Leftrightarrow\hept{\begin{cases}x=16-y\\y^2-16y+55=0\end{cases}}\)\(\Leftrightarrow\hept{\begin{cases}x=5\\y=11\end{cases}}hay\hept{\begin{cases}x=11\\y=5\end{cases}}\)

\(\cdot\hept{\begin{cases}S=55\\P=16\end{cases}}\Leftrightarrow\hept{\begin{cases}x+y=55\\xy=16\end{cases}}\Leftrightarrow\hept{\begin{cases}x=55-y\\y\left(55-y\right)=16\end{cases}}\Leftrightarrow\hept{\begin{cases}x=55-y\\y^2-55y+16=0\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}x=\frac{55-3\sqrt{329}}{2}\\y=\frac{55+3\sqrt{329}}{2}\end{cases}}hay\hept{\begin{cases}x=\frac{55+3\sqrt{329}}{2}\\y=\frac{55-3\sqrt{329}}{2}\end{cases}}\)

e) \(\hept{\begin{cases}x\sqrt{y}+y\sqrt{x}=12\\x\sqrt{x}+y\sqrt{y}=28\end{cases}}\). Đặt \(\hept{\begin{cases}S=\sqrt{x}+\sqrt{y}\\P=\sqrt{xy}\end{cases}}\), ta có \(\hept{\begin{cases}SP=12\\P\left(S^2-2P\right)=28\end{cases}}\Leftrightarrow\hept{\begin{cases}S=\frac{12}{P}\\P\left(\frac{144}{P^2}-2P\right)=28\end{cases}}\Leftrightarrow\hept{\begin{cases}S=\frac{12}{P}\\2P^4+28P^2-144P=0\end{cases}}\)
Tự làm tiếp nhá! Đuối lắm luôn

Dùng cái đầu đi ạ

31 tháng 3 2018

\(\hept{\begin{cases}\frac{x^2+1}{y}=\frac{y^2+1}{y}\left(1\right)\\x^2+3y^2=4\left(2\right)\end{cases}}\)

ĐK \(x,y\ne0\)

   Từ     \(\frac{y^2+1}{y}=\frac{x^2+1}{x}\Leftrightarrow xy^2+x=x^2y+y\Leftrightarrow\left(xy-1\right)\left(x-y\right)=0\)

           \(\Leftrightarrow\hept{\begin{cases}x=y\\xy=1\end{cases}}\)

+ thay  \(x=y\)vào (2) ta dc ..................

+xy=1 suy ra 1=1/y thay vao 2 ta dc............