Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
x2-3xy+x=2y-2y2
<=>x2-3xy+2y2=2y-x
<=>(x-2y)(x-y)=2y-x
<=>(x-2y)(x-y+1)=0
đến đây thay vào pt 2 là ra
Mình theo olm từ hồi thi violympic toán tỉnh.... bây giờ cũng đã sắp thi cấp 3. thời gian trôi nhanh quá :(
Web này là 1 phần kỉ niệm của mình. Mình muốn góp một chút cho web. Chúc bạn thi tốt nhé !
ĐK: x>=1-2y, 1>=x>=-2
PT(2)=>\(\left(2y+x\right)\left(y^2-x-y\right)=0\) 0=>2y=-x hoặc y^2-y=x
Với 2y=-x thì vi phạm điều kiện xác định do x+2y-1=-2y+2y-1=-1
Với y^2-y=x=> \(\sqrt{y^2+y-1}+\sqrt{1-y^2+y}=y^2-y+2\)
\(ĐKXĐ:\frac{\sqrt{5}+1}{2}\ge y\ge\frac{\sqrt{5}-1}{2}\)
GIẢi pt này ra y=1 => 0=x (tm)
Nếu bạn chưa hiểu PT cuối thì đây là cách mình giải nó \(\sqrt{y^2+y-1}+\sqrt{1-y^2+y}\le\frac{1}{2}\left(2y+2\right)\left(am-gm\right)\)
\(=>VT\le y+1\le y^2-y+2\Leftrightarrow\left(y-1\right)^2\ge0\)
DB xảy ra khi y=1 (TMĐK)
ôi người ơi mọi người có thấy ai tên hồ thị hương mà là con trai chưa
ĐK: \(\hept{\begin{cases}x\ge2\\y\ge-\frac{1}{3}\end{cases}}\)
\(\sqrt{x-2}+x^3-6x^2+12x=\sqrt{3y+1}+27y^3+27y^2+9y+9\)
<=> \(\sqrt{x-2}+x^3-6x^2+12x-8=\sqrt{3y+1}+27y^3+27y^2+9y+1\)
<=> \(\sqrt{x-2}+\left(x-2\right)^3=\sqrt{3y+1}+\left(3y+1\right)^3\)
<=> \(\left(\sqrt{x-2}-\sqrt{3y+1}\right)+\left[\left(x-2\right)^3-\left(3y+1\right)^3\right]=0\)
<=> \(\frac{x-3y-3}{\sqrt{x-2}+\sqrt{3y+1}}+\left(x-3y-3\right)\left[\left(x-2\right)^2+\left(x-2\right)\left(3y+1\right)+\left(3y+1\right)^2\right]=0\)
<=> \(\left(x-3y-3\right)\left(\frac{1}{\sqrt{x-2}+\sqrt{3y+1}}+\left(x-2\right)^2+\left(x-2\right)\left(3y+1\right)+\left(3y+1\right)^2\right)=0\)
<=> \(x-3y-3=0\)
vì \(\frac{1}{\sqrt{x-2}+\sqrt{3y+1}}+\left(x-2\right)^2+\left(x-2\right)\left(3y+1\right)+\left(3y+1\right)^2>0\)
<=> x = 3y + 3
Thế vào phương trình trên ta có:
\(2+2\left(3y+3\right)^2-2y^2+3\left(3y+3\right)y-4\left(3y+3\right)-3y=0\)
<=> \(25y^2+30y+8=0\Leftrightarrow\orbr{\begin{cases}y=-\frac{2}{5}\\y=-\frac{4}{5}\end{cases}}\)không thỏa mãn đk
Vậy hệ vô nghiệm.
Câu 1: ĐK: x khác -1/2, y khác -2
Đặt \(\sqrt[3]{\frac{2x+1}{y+2}}=t\) Từ phương trình thứ nhất ta có:
\(t+\frac{1}{t}=2\Leftrightarrow t^2-2t+1=0\Leftrightarrow t=1\)
=> \(\sqrt[3]{\frac{2x+1}{y+2}}=1\Leftrightarrow2x+1=y+2\Leftrightarrow2x-y=1\)
Vậy nên ta có hệ phương trình cơ bản: \(\hept{\begin{cases}2x-y=1\\4x+3y=7\end{cases}}\)Em làm tiếp nhé>
\(1,ĐKXĐ:\hept{\begin{cases}y\ne-2\\x\ne-\frac{1}{2}\end{cases}}\)
Đặt \(\sqrt[3]{\frac{2x+1}{y+2}}=a\left(a\ne0\right)\)
\(Pt\left(1\right)\Leftrightarrow a+\frac{1}{a}=2\)
\(\Leftrightarrow a^2+1=2a\)
\(\Leftrightarrow\left(a-1\right)^2=0\)
\(\Leftrightarrow a=1\)
\(\Leftrightarrow\sqrt[3]{\frac{2x+1}{y+2}}=1\)
Dùng pp đẳng cấp
Đặt x=t*y
ta có \(\int^{x^3+6x^3t=7\left(a\right)}_{2x^3t^3+3x^3t^2=5}\Rightarrow\int^{x^3\left(1+6t\right)=7}_{x^3\left(2t^3+3t^2\right)=5}\)
ta thấy x=0 k0 là n0 của phương trình
Nên chia 2 vế cho nhau ta có (1+6t)/(2t^3+3t^2)=7/5\(\Rightarrow\) t=1;\(\frac{-35-\sqrt{945}}{28}và\frac{-35+\sqrt{945}}{28}\)
thay t vào(a) ta tìm đc x sau đó quay lại tìm y
pp đẳng cấp là gì vậy bạn