\(\frac{1}{x^2+y^2+1}\)+\(\frac{1}{y^2+z^2+1}\)...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

27 tháng 10 2019

Ta di chung minh

\(\frac{1}{x^2+y^2+1}+\frac{1}{y^2+z^2+1}+\frac{1}{z^2+x^2+1}\le1\)

\(\Leftrightarrow\frac{x^2+y^2}{x^2+y^2+1}+\frac{y^2+z^2}{y^2+z^2+1}+\frac{z^2+x^2}{z^2+x^2+1}\ge2\)

\(VT\ge\frac{\left(\sqrt{x^2+y^2}+\sqrt{y^2+z^2}+\sqrt{z^2+x^2}\right)^2}{2\left(x^2+y^2+z^2\right)+3}\left(1\right)\)

Gio chung minh:

\(VT_{\left(1\right)}\ge2\)

\(\Leftrightarrow\left(\sqrt{x^2+y^2}+\sqrt{y^2+z^2}+\sqrt{z^2+x^2}\right)^2\ge4\left(x^2+y^2+z^2\right)+6\)

\(\Leftrightarrow\sqrt{\left(x^2+y^2\right)\left(y^2+z^2\right)}+\sqrt{\left(y^2+z^2\right)\left(z^2+x^2\right)}+\sqrt{\left(z^2+x^2\right)\left(x^2+y^2\right)}\ge x^2+y^2+z^2+3\left(2\right)\)

Ta co:

\(\sqrt{\left(x^2+y^2\right)\left(y^2+z^2\right)}=\sqrt{\left(x^2+y^2\right)\left(z^2+y^2\right)}\ge zx+y^2\)

The same

\(\Rightarrow VT_2\ge x^2+y^2+z^2+xy+yz+zx\)

Chung minh:

\(VT_2\ge x^2+y^2+z^2+3\)

\(\Leftrightarrow xy+yz+zx\ge3\)

Ta lai co:

\(xy+yz+zx\ge3\sqrt[3]{\left(xyz\right)^2}=3\)

Dau '=' xay ra khi \(x=y=z=1\)

11 tháng 11 2019

MaiLink hình như sai rồi bạn, dòng 5 bị ngược dấu

4 tháng 12 2018

\(\hept{\begin{cases}\frac{x+y}{xyz}=\frac{1}{2}\\\frac{y+z}{xyz}=\frac{5}{6}\\\frac{z+x}{xyz}=\frac{2}{3}\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}\frac{1}{yz}+\frac{1}{zx}=\frac{1}{2}\\\frac{1}{zx}+\frac{1}{xy}=\frac{5}{6}\\\frac{1}{xy}+\frac{1}{yz}=\frac{2}{3}\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}xy=2\\yz=6\\zx=3\end{cases}}\)

Làm nốt

22 tháng 5 2020

ko lam thi thoi chui cl ay!!!

22 tháng 5 2020

đù , chuyện giề đang xảy ra vậy man

18 tháng 3 2018

bình phương vế 1 rồi lấy pt 2 thế vào :

\(\frac{2}{xy}\)=\(4+\frac{1}{z^2}\)

23 tháng 8 2017

2/ \(x+y+z=\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\)

\(\Leftrightarrow x+y+z=xy+yz+zx\)

\(\Leftrightarrow x+y+z-xy-yz-zx+xyz-1=0\)

\(\Leftrightarrow\left(x-1\right)\left(y-1\right)\left(z-1\right)=0\)

\(\Leftrightarrow\hept{\begin{cases}x=1\\y=1\\z=1\end{cases}}\)

\(\Rightarrow P=0\)

23 tháng 8 2017

\(x^2-\sqrt{x+5}=5\)

\(\Leftrightarrow x^2-5=\sqrt{x+5}\)

\(\Leftrightarrow x^4-10x^2+25=x+5\)

\(\Leftrightarrow x^4-10x^2-x+20=0\)

\(\Leftrightarrow\left(x^2-x-5\right)\left(x^2+x-4\right)=0\)

30 tháng 9 2016

Ta có \(\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right)^2=\frac{1}{x^2}+\frac{1}{y^2}+\frac{1}{z^2}+\frac{2}{xyz}\left(x+y+z\right)=\frac{1}{x^2}+\frac{1}{y^2}+\frac{1}{z^2}+\frac{1}{xyz}=4\)

\(\Rightarrow\frac{1}{x}+\frac{1}{y}+\frac{1}{z}=2\)(vì \(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}>0\))

Mặt khác, ta có : \(\frac{1}{x+y+z}=2\) . 

\(\Rightarrow\frac{1}{x}+\frac{1}{y}+\frac{1}{z}=\frac{1}{x+y+z}\Leftrightarrow\frac{1}{x}+\frac{1}{y}+\left(\frac{1}{z}-\frac{1}{x+y+z}\right)=0\)

\(\Leftrightarrow\frac{x+y}{xy}+\frac{x+y}{z\left(x+y+z\right)}=0\Leftrightarrow\left(x+y\right)\left(\frac{1}{xy}+\frac{1}{z\left(x+y+z\right)}\right)=0\)

\(\Leftrightarrow\frac{\left(x+y\right)\left(y+z\right)\left(z+x\right)}{xyz\left(x+y+z\right)}=0\Leftrightarrow\left(x+y\right)\left(y+z\right)\left(z+x\right)=0\)

=> x+y = 0 hoặc y + z = 0 hoặc z + x = 0

Từ đó suy ra P = 0 (lí do vì x,y,z là các số mũ lẻ)