Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
trong cac phan so sau :2/3 ;2/8 ;17/300 ;1/30.phan so thap phan la phan so
Điều kiện \(x>0.y>0,y\ne1\)
Với điều kiện này thì phương trình thứ nhất tương đương với \(x=y^2\)
Thế vào phương trình thứ 2 ta được :
\(\log_2y=\log_yy^2\Leftrightarrow y=4\)
Suy ra x=16.
Vậy hệ có nghiệm duy nhất là (16;4)
Điều kiện x>1
Từ (1) ta có \(\log_{\sqrt{3}}\frac{x+1}{x-1}>\log_34\) \(\Leftrightarrow\frac{x+1}{x-1}>2\) \(\Leftrightarrow\) 1<x<3
Đặt \(t=\log_2\left(x^2-2x+5\right)\)
Tìm điều kiện của t :
- Xét hàm số \(f\left(x\right)=\log_2\left(x^2-2x+5\right)\) với mọi x thuộc (1;3)
- Đạo hàm : \(f\left(x\right)=\frac{2x-2}{\ln2\left(x^2-2x+5\right)}>\) mọi \(x\in\left(1,3\right)\)
Hàm số đồng biến nên ta có \(f\left(1\right)\) <\(f\left(x\right)\) <\(f\left(3\right)\) \(\Leftrightarrow\)2<2<3
- Ta có \(x^2-2x+5=2'\)
\(\Leftrightarrow\) \(\left(x-1\right)^2=2'-4\)
Suy ra ứng với mõi giá trị \(t\in\left(2,3\right)\) ta luôn có 1 giá trị \(x\in\left(1,3\right)\)
Lúc đó (2) suy ra : \(t-\frac{m}{t}=5\Leftrightarrow t^2-5t=m\)
Xét hàm số : \(f\left(t\right)=t^2-5t\) với mọi \(t\in\left(2,3\right)\)
- Đạo hàm : \(f'\left(t\right)=2t-5=0\Leftrightarrow t=\frac{5}{2}\)
- Bảng biến thiên :
x | 2 \(\frac{5}{2}\) 3 |
y' | + 0 - |
y | -6 -6 -\(\frac{25}{4}\) |
Để hệ có 2 cặp nghiệm phân biệt \(\Leftrightarrow-6>-m>-\frac{25}{4}\)\(\Leftrightarrow\)\(\frac{25}{4}\) <m<6
Điều kiện x, y dương
Đặt \(u=lgx,v=lgy,\left(u>0\right)\), ta có hệ :
\(\begin{cases}u+2v=3\\u^2-6v=1\end{cases}\) \(\Leftrightarrow\begin{cases}2v=3-u\\u^2+3u-10=0\end{cases}\)
\(\Leftrightarrow\begin{cases}u=2\\v=\frac{1}{2}\end{cases}\)
Từ đó tính ra được x=4, \(y=\sqrt{10}\)
Điều kiện là x;y là các số nguyên dương
Đặt u=lgx và vlgy (u>0) , ta có hệ phương trình sau :
\(\begin{cases}u+2v=3\\u^2-6v=1\end{cases}\Leftrightarrow\begin{cases}2v=3-u\\u^2+3u-10=0\end{cases}\Leftrightarrow}\begin{cases}u=2\\v=\frac{1}{2}\end{cases}}\)
Từ đó ta thay u=2 và v=1/2 vào phương trình rồi tìm x;y
Điều kiện \(x,y>0,x\ne1,y\ne1\) Hệ tương đương với
\(\begin{cases}\frac{1}{2}\log_y\left(xy\right)=\log_xy\\2^x+2^y=3\end{cases}\) \(\Leftrightarrow\begin{cases}\log_yx+1=\frac{2}{\log_yx}\\2^x+2^y=3\end{cases}\)
Giải phương trình thú nhất ẩn \(t=\log_yx\) ta thu được \(t=1;t=-2\)
Do đó x=y hoặc \(x=\frac{1}{y^2}\)
Với x=y thế vào phương trình 2 ta thu được \(x=\log_2\frac{3}{2}\)
Với \(x=\frac{1}{y^2}\), thế vào phương trình 2 ta được :
\(2^y+2^{\frac{1}{y^2}}=3\left(y>0,y\ne1\right)\)
Phương trình này vô nghiệm, thật vậy :
+ Nếu \(y>1\) thì \(2^y>2\) và \(2^{\frac{1}{y^2}}>2^o=1\) suy ra vế trái >2=VP
+ 0<y<1 thì \(2^y>1\)và \(2^{\frac{1}{y^2}}>2^1=2\) suy ra vế trái >2=VP
Vậy hệ phương trình có nghiệm duy nhất là \(\left(\log_2\frac{3}{2};\log_2\frac{3}{2}\right)\)
cau a , xet phuong trinh 1 la 8(x+y) =x^2 +2y^2 + 3xy
ta co , 8(x+y) = x^2 +2xy+y^2 +y^2+xy
8(x+y)= (x+y)^2+y(x+y)
(x+y)((x+y)+y-8)=0 xét (x+y)=0 và (x+2y-8)=0 . xét từng trường hợp rồi thế vào phương trình 2 rồi tự giải lột nhe
cau 2 de kho hieu the , viet lai xem nao sao 2 phong trinh ma bang mot bieu thuc thoi ak
Điều kiện x, y dương. Hệ phương trình tương đương với hệ :
\(\begin{cases}\log_2\left(x+3\right)=2\left(1+\log_3y\right)\\2\left(1+\log_3x\right)=\log_2\left(y+3\right)\end{cases}\) (*)
Cộng vế với vế 2 phương trình của hệ (*) ta có :
\(\log_2\left(x+3\right)+2\log_3x=\log_2\left(y+3\right)+2\log_3y\)
Xét hàm số :
\(f\left(t\right)=\log_2\left(t+3\right)+2\log_3t\) trên miền \(\left(0;+\infty\right)\).
Dễ thấy hàm số luôn đồng biến trên \(\left(0;+\infty\right)\)., mà \(f\left(x\right)=f\left(y\right)\) nên \(x=y\).
Thay vào một trong hai phương trình của hệ (*), ta được
\(\log_2\left(x+3\right)=2\left(1+\log_3x\right)\)
hay
\(x+3=2^{2\left(1+\log_3x\right)}=4.2^{\log_3x^2}=4.2^{\log_32.\log_2x^2}=4\left(2^{\log_2x^2}\right)^{\log_32}\)
\(\Leftrightarrow x+3=4.x\log^{\log_34}\)
\(\Leftrightarrow x^{1-\log_34}+3.x^{-\log_34}=4\) (**)
Xét
\(g\left(x\right)=x^{1-\log_34}+3.x^{-\log_34}\) trên khoảng( \(0:+\infty\)), ta có :
\(g'\left(x\right)=\left(1-\log_34\right)x^{-\log_34}-3.\log_34x^{-1-\log_34}\)
Thấy ngay \(g'\left(x\right)<0\) với mọi \(x\in\left(0;+\infty\right)\), do đó \(g\left(x\right)\)nghịch biến trên \(\left(0;+\infty\right)\)
Mặt khác \(g\left(1\right)=4\) vậy x=1 là nghiệm duy nhất của phương trình (**)
Hệ phương trình đã cho có nghiệm duy nhất là (1;1)