\(\hept{\begin{cases}x+y+z=6\left(1\right)\\x^2+y^2+z^2=18\le...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

6 tháng 6 2019

Làm hơi tắt , thông cảm  ;))

Từ (1) \(\Rightarrow36=\left(x+y+z\right)^2\Leftrightarrow36=x^2+y^2+z^2+2\left(xy+yz+zx\right)\)

          \(\Leftrightarrow36=18+2\left(xy+yz+zx\right)\Leftrightarrow xy+yz+zx=9\)(4)

Từ (3) \(\Rightarrow16=\left(\sqrt{x}+\sqrt{y}+\sqrt{z}\right)^2\Leftrightarrow16=x+y+z+2\left(\sqrt{xy}+\sqrt{yz}+\sqrt{zx}\right)\)

          \(\Leftrightarrow\sqrt{xy}+\sqrt{yz}+\sqrt{zx}=5\Leftrightarrow\left(\sqrt{xy}+\sqrt{yz}+\sqrt{zx}\right)^2=25\)

         \(\Leftrightarrow xy+yz+zx+2\left(\sqrt{xy^2z}+\sqrt{xyz^2}+\sqrt{x^2yz}\right)=25\)

         \(\Leftrightarrow\sqrt{xyz}\left(\sqrt{x}+\sqrt{y}+\sqrt{z}\right)=8\Leftrightarrow\sqrt{xyz}=\frac{8}{4}\Leftrightarrow xyz=4\)(5)

Vậy hệ đã cho tương đương với :

\(\hept{\begin{cases}x+y+z=6\left(1\right)\\xy+yz+zx=9\left(4\right)\\xyz=4\left(5\right)\end{cases}}\)

Từ (5) \(\Rightarrow yz=\frac{4}{x}\)(Dễ thấy \(x,y,z>0\))

     (4)  \(\Leftrightarrow xy+yz+zx+x^2=9+x^2\Leftrightarrow x\left(x+y+z\right)+yz=9+x^2\)

           \(\Leftrightarrow x.6+\frac{4}{x}=9+x^2\Leftrightarrow x^3-6x^2+9x-4=0\)

           \(\Leftrightarrow\left(x-1\right)^2\left(x-4\right)=0\Leftrightarrow\orbr{\begin{cases}x=1\\x=4\end{cases}.}\)

Thế vào ta suy ra hệ có các nghiệm : \(\left(x,y,z\right)=\left(1,1,4\right),\left(1,4,1\right),\left(4,1,1\right).\)

            

6 tháng 6 2019

thanks bạn Đào Thu Hòa 

24 tháng 9 2016

Ta có : y(x+y+z) + x(x+y+z) + z(x+y+z) = 18 +(-12) + 3

=>  (x+y+z)^2  = 9 

=> x+y+z = 3 hoặc -3

Xét x+y+z = 3

=> y = 6 ; x = -4 ; z = 1 

Xét x+y+z = -3

=> y = -6 ; x= 4 ; z = -1

Vậy (x;y;z) = (6;-4;1) ; (-6;4;-1)

16 tháng 10 2017

a) thay \(x-y=\frac{3}{10}\)vào \(y\left(x-y\right)=\frac{-3}{50}\)ta có\(\frac{3}{10}y=\frac{-3}{50}\)=>\(y=\frac{-3}{50}:\frac{3}{10}=\frac{-1}{5}\)=>\(x-y=\frac{3}{10}\Rightarrow x=\frac{3}{10}+\frac{-1}{5}=\frac{1}{10}\)

hôm sau mik giải tip cho

25 tháng 7 2016

\(\Rightarrow\sqrt{y\left(2x-y\right)}.\sqrt{z\left(2y-z\right)}.\sqrt{x\left(2z-x\right)}=xyz\)

\(\Rightarrow\sqrt{xyz}.\sqrt{\left(2x-y\right)\left(2y-z\right)\left(2z-x\right)}=xyz\)

\(\Rightarrow\sqrt{\left(2x-y\right)\left(2y-z\right)\left(2z-x\right)}=\sqrt{xyz}\)

=>(2x-y)(2y-z)(2z-x)=xyz

=>(2x-y)2(2y-z)2(2z-x)2=x2y2z2

=>8(2x-y)2(2y-z)2(2z-x)2=8x2y2z2

(3-x2)(3-y2)(3-z2)

=3x2y2+3y2z2+3z2x2-x2y2z2

sau đó phân tích cái 8(2x-y)2(2y-z)2(2z-x)2

\(\Rightarrow\sqrt{y\left(2x-y\right)}.\sqrt{z\left(2y-z\right)}.\sqrt{x\left(2z-x\right)}=xyz\)

\(\Rightarrow\sqrt{xyz}.\sqrt{\left(2x-y\right)\left(2y-z\right)\left(2z-x\right)}=xyz\)

\(\Rightarrow\sqrt{\left(2x-y\right)\left(2y-z\right)\left(2z-x\right)}=\sqrt{xyz}\)

=>(2x-y)(2y-z)(2z-x)=xyz

=>(2x-y)2(2y-z)2(2z-x)2=x2y2z2

=>8(2x-y)2(2y-z)2(2z-x)2=8x2y2z2

(3-x2)(3-y2)(3-z2)

=3x2y2+3y2z2+3z2x2-x2y2z2

sau đó phân tích cái 8(2x-y)2(2y-z)2(2z-x)2

14 tháng 1 2017

\(\hept{\begin{cases}xy=a\\x+y=b\end{cases}\Rightarrow x\left(b-x\right)=a\Leftrightarrow-x^2+bx=a\Leftrightarrow x^2-bx+\frac{b^2}{4}=\frac{b^2}{4}-a}\)

\(\Leftrightarrow\left(x-\frac{b}{2}\right)^2=\left(\frac{b^2}{4}-a\right)=\frac{b^2-4a}{4}\)

có nghiệm \(\Rightarrow b^2-4a\ge0\)

\(\hept{\begin{cases}x=\frac{b-\sqrt{b^2-4a}}{2}\\x=\frac{b+\sqrt{b^2-4a}}{2}\end{cases}}\)

Nghiệm nguyên \(b^2-4a=n^2.b^2\) Với n phải là số lẻ Đảm khi cộng(+) trừ(-) b ra số chẵn

\(\left(z+t\right)^2-4\left(xt\right)+4=n^2\left(z+t\right)^2\)

\(\left(z-t\right)^2+4=n^2\left(z+t\right)^2\)

\(\Leftrightarrow\left[n\left(z+t\right)\right]^2-\left(z-t\right)^2=4\)

Hiệu hai số CP =4 duy nhất có 4 và 0

\(\hept{\begin{cases}\left(z-t\right)^2=0\Rightarrow z=t\\\left[n\left(z+t\right)\right]^2=4\end{cases}}\Rightarrow dpcm\)

9 tháng 9 2017

Câu 1/

\(\left\{{}\begin{matrix}\sqrt{\dfrac{4x}{5y}}=\sqrt{x+y}-\sqrt{x-y}\left(1\right)\\\sqrt{\dfrac{5y}{x}}=\sqrt{x+y}+\sqrt{x-y}\left(2\right)\end{matrix}\right.\)

Lấy (1).(2) vế theo vế được

\(\left(\sqrt{x+y}-\sqrt{x-y}\right)\left(\sqrt{x+y}+\sqrt{x-y}\right)=2\)

\(\Leftrightarrow x+y-\left(x-y\right)=2\)

\(\Leftrightarrow2y=2\)

\(\Leftrightarrow y=1\)

Thế vô tìm được x.

9 tháng 9 2017

Câu 2/ Đề chưa đủ. x, y, z thuộc R luôn à. Tìm min hay max hay là tìm cả 2.