K
Khách
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Các câu hỏi dưới đây có thể giống với câu hỏi trên
TN
0
3 tháng 2 2016
<=> xy+5x+3y+15=xy+8x+y+8 <=> 3x-2y=7 <=> 9x-6y=21 <=> x=3 <=> x=3
10xy+14x-15y-21=10xy+10x-12y-12 4x-3y=9 8x-6y=18 8.3-6y=18 y=1
DD
1
DD
4
20 tháng 3 2016
x/y=2/3 nên x=2/3.y
\(\int^{x=\frac{2}{3}y}_{x+y=10}\Leftrightarrow\int^{^{x=\frac{2}{3}y}}_{^{\frac{5}{3}y=10}}\Leftrightarrow\int^{^{x=\frac{2}{3}y}}_{y=6}\Leftrightarrow\int^{x=4}_{y=6}\)
Ta có hệ \(\hept{\begin{cases}\left(4x^2+1\right)x+\left(y-3\right)\sqrt{5-2y}=0\left(1\right)\\4x^2+y^2+2\sqrt{3-4x}=7\left(2\right)\end{cases}}\)
ĐK \(\hept{\begin{cases}y\ge\frac{5}{2}\\x\le\frac{3}{4}\end{cases}}\)
Đặt \(\hept{\begin{cases}2x=a\\\sqrt{5-2y}=b\ge0\end{cases}\Rightarrow\hept{\begin{cases}4x^2=a^2\\5-2y=b^2\end{cases}}}\)\(\Rightarrow\hept{\begin{cases}4x^2=a^2\\y-3=\frac{5-b^2}{2}-3=\frac{-1-b^2}{2}\end{cases}}\)
Thế vào (1) ta có \(\left(a^2+1\right)\frac{a}{2}+\frac{-1-b^2}{2}b=0\)
\(\Leftrightarrow\frac{a^3+a}{2}+\frac{-b^3-b}{2}=0\Leftrightarrow a^3-b^3+a-b=0\)
\(\Leftrightarrow\left(a-b\right)\left(a^2+ab+b^2+1\right)=0\)
\(\Leftrightarrow a=b\)vì \(a^2+ab+b^2+1>0\forall a,b\)
\(\Rightarrow2x=\sqrt{5-2y}\Rightarrow4x^2=5-2y\Rightarrow y=\frac{5-4x^2}{2}\)
Thế y vào (2) ta có \(4x^2+\left(\frac{5-4x^2}{2}\right)^2+2.\sqrt{3-4x}=7\)
\(\Leftrightarrow16x^2+\left(5-4x^2\right)^2+8\sqrt{3-4x}=28\)\(\Leftrightarrow16x^2+25-40x^2+16x^4+8\sqrt{3-4x}-28=0\)
\(\Leftrightarrow16x^4-24x^2+8\sqrt{3-4x}-3=0\)
\(\Leftrightarrow\left(16x^4-1\right)-\left(24x^2-6\right)+\left(8\sqrt{3-4x}-8\right)=0\)
\(\Leftrightarrow\left(4x^2-1\right)\left(4x^2+1\right)-6\left(4x^2-1\right)+\left(8\sqrt{3-4x}-8\right)=0\)
\(\Leftrightarrow\left(4x^2-1\right)\left(4x^2+1\right)-6\left(4x^2-1\right)+8.\frac{2-4x}{\sqrt{3-4x}+1}=0\)
\(\Leftrightarrow\left(2x+1\right)\left(2x-1\right)\left(4x^2+1\right)-6\left(2x+1\right)\left(2x-1\right)-8.2.\frac{2x-1}{\sqrt{3-4x}+1}=0\)
\(\Leftrightarrow\left(2x-1\right)\left[\left(2x+1\right)\left(4x^2+1\right)-6\left(2x+1\right)-\frac{16.1}{\sqrt{3-4x}+1}\right]=0\)
\(\Leftrightarrow\left(2x-1\right)\left[\left(2x+1\right)\left(4x^2-5\right)-\frac{16}{\sqrt{3-4x}+1}\right]=0\)
\(\Leftrightarrow2x-1=0\)
Vì với \(y=\frac{5-4x^2}{2}\ge\frac{5}{2}\Rightarrow4x^2-5< 0\Rightarrow\left(2x+1\right)\left(4x^2-5\right)-\frac{16}{\sqrt{3-4x}+1}< 0\)
\(\Leftrightarrow x=\frac{1}{2}\Rightarrow y=\frac{5-4\left(\frac{1}{2}\right)^2}{2}=2\)
Vậy hệ có nghiệm \(\left(x;y\right)=\left(\frac{1}{2};2\right)\)