K
Khách
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
QN
0
Các câu hỏi dưới đây có thể giống với câu hỏi trên
HT
0
AM
0
TL
1
DN
0
N
0
NT
1
25 tháng 7 2017
\(\hept{\begin{cases}x^2+y^2=2x^2y^2\\\left(x+y\right)\left(1+xy\right)=4x^2y^2\end{cases}}\)
Đặt \(\hept{\begin{cases}x+y=S\\xy=P\end{cases}}\)thì ta có:
\(\Rightarrow\hept{\begin{cases}S^2-2P-2P^2=0\\S\left(1+P\right)-4P^2=0\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}\left(\frac{4P^2}{1+P}\right)^2-2P-2P^2=0\left(1\right)\\S=\frac{4P^2}{1+P}\left(2\right)\end{cases}}\)
\(\left(1\right)\Leftrightarrow7P^4-3P^3-3P^2-P=0\)
\(\Leftrightarrow P\left(P-1\right)\left(7P^2+4P+1\right)=0\)
Dễ thấy \(7P^2+4P+1>0\)
\(\Rightarrow\orbr{\begin{cases}P=0\\P=1\end{cases}}\)
\(\Rightarrow\orbr{\begin{cases}S=0\\S=2\end{cases}}\)
Tới đây thì đơn giản rồi nhé
NM
0
LD
0