![](https://rs.olm.vn/images/avt/0.png?1311)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
![](https://rs.olm.vn/images/avt/0.png?1311)
![](https://rs.olm.vn/images/avt/0.png?1311)
Ta có: \(\hept{\begin{cases}\left(\frac{1}{x}+y\right)+\left(\frac{1}{x}-y\right)=\frac{5}{8}\\\left(\frac{1}{x}+y\right)-\left(\frac{1}{x}-y\right)=-\frac{3}{8}\end{cases}\Leftrightarrow\hept{\begin{cases}\frac{2}{x}=\frac{5}{8}\\2y=-\frac{3}{8}\end{cases}\Leftrightarrow}\hept{\begin{cases}x=\frac{16}{5}\\y=-\frac{3}{16}\end{cases}}}\)
![](https://rs.olm.vn/images/avt/0.png?1311)
\(\left(x-y\right)^2+2\cdot\frac{3}{2}\left(x-y\right)+\frac{9}{4}=4+\frac{9}{4}=\frac{25}{4}\)
\(\Rightarrow\left(x-y+\frac{3}{2}\right)^2=\frac{25}{4}\Rightarrow x-y+\frac{3}{2}=\frac{5}{2}\Rightarrow x-y=1\Rightarrow x=y+1\)
\(2x+3y=2\left(y+1\right)+3y=2y+2+3y=5y+2=12\Rightarrow5y=10\Rightarrow y=2\)
\(\Rightarrow x=y+1=2+1=3\)
vây x=23;y=2
Ta có : \(\hept{\begin{cases}\left(x-y\right)^2+3\left(x-y\right)=4\\2x+3y=12\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}\left(x-y\right)^2+3\left(x-y\right)+\frac{9}{4}=4+\frac{9}{4}\\2x+3y=12\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}\left(x-y+\frac{3}{2}\right)^2=\frac{25}{4}\\2x+3y=12\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}x-y+\frac{3}{2}=\frac{5}{2}\\2x+3y=12\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}x-y=\frac{5}{2}-\frac{3}{2}\\2x+3y=12\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}x-y=1\\2x+3y=12\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}2x-2y=2\\2x+3y=12\end{cases}}\)
<=> 2x - 2y - 2x - 3y = 2 - 12
<=> -5y = -10
<=> y = 2
=> 2x + 3.2 = 12
<=> 2.x + 6 = 12
<=> 2x = 6
<=> x = 3 .
![](https://rs.olm.vn/images/avt/0.png?1311)
\(a,\left\{{}\begin{matrix}x+y=3\\2x-3y=1\end{matrix}\right.\\ \Leftrightarrow\left\{{}\begin{matrix}2x+2y=6\\2x-3y=1\end{matrix}\right.\\ \Leftrightarrow\left\{{}\begin{matrix}5y=5\\2x-3y=1\end{matrix}\right.\\ \Leftrightarrow\left\{{}\begin{matrix}y=1\\2x-3.1=1\end{matrix}\right.\\ \Leftrightarrow\left\{{}\begin{matrix}x=2\\y=1\end{matrix}\right.\)
Vậy \(\left(x;y\right)=\left(2;1\right)\)
b, \(x^2-7x+10=0\\ \Leftrightarrow x^2-5x-2x+10=0\\ \Leftrightarrow x\left(x-5\right)-2\left(x-5\right)=0\\ \Leftrightarrow\left(x-2\right)\left(x-5\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x-2=0\\x-5=0\end{matrix}\right.\\ \Leftrightarrow\left[{}\begin{matrix}x=2\\x=5\end{matrix}\right.\)
\(a,\)\(\left\{{}\begin{matrix}x+y=3\\2x-3y=1\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}3x+3y=9\\2x-3y=1\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}5x=10\\2x-3y=1\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x=2\\2.2-3y=1\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x=2\\y=1\end{matrix}\right.\)
Vậy hệ pt có nghiệm duy nhất \(\left(x;y\right)=\left(2;1\right)\)
\(b,x^2-7x+10=0\)
\(\Delta=b^2-4ac=\left(-7\right)^2-4.10=9>0\)
\(\Rightarrow\) Pt có 2 nghiệm \(x_1,x_2\)
Ta có :
\(\left\{{}\begin{matrix}x_1=\dfrac{-b+\sqrt{\Delta}}{2a}=\dfrac{7+3}{2}=5\\x_2=\dfrac{-b-\sqrt{\Delta}}{2a}=\dfrac{7-3}{2}=2\end{matrix}\right.\)
Vậy \(S=\left\{5;2\right\}\)
![](https://rs.olm.vn/images/avt/0.png?1311)
y=2a-3
x=-3a+6
de (3a-6)2 +(2a-3)2 =17
13a2 -48a +28=0 => a=....
pt(2)=>x=a-2y thay vô (1) ta đươc 2a-4y+3y=3=>y=2a-3
=>(1)<=>2x+6a-9=3=>x=(12-6a)/2
x^2+y^2=12<=>(2a-3)^2+(6-3a)^2=17
giải pt tìm ra a
![](https://rs.olm.vn/images/avt/0.png?1311)
\(\left\{{}\begin{matrix}\dfrac{2x-y}{3}=x+y+1\\x-3y-5=\dfrac{2x-y}{2}\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}2x-y=3\left(x+y+1\right)\\2\left(x-3y-5\right)=2x-y\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}2x-y-3x-3y=3\\2x-6y-10-2x+y=0\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}-x-4y=3\\-5y=10\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}y=-2\\x+4y=-3\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}y=-2\\x=-3-4y=-3-4\cdot\left(-2\right)=8-3=5\end{matrix}\right.\)
![](https://rs.olm.vn/images/avt/0.png?1311)
Bài 2:
a) Ta có: \(\Delta=\left(m-1\right)^2-4\cdot1\cdot\left(-m^2-2\right)\)
\(=m^2-2m+1+4m^2+8\)
\(=5m^2-2m+9>0\forall m\)
Do đó, phương trình luôn có hai nghiệm phân biệt với mọi m
Bài 1:
ĐKXĐ \(2x\ne y\)
Đặt \(\dfrac{1}{2x-y}=a;x+3y=b\)
HPT trở thành
\(\left\{{}\begin{matrix}a+b=\dfrac{3}{2}\\4a-5b=-2\end{matrix}\right.\\ \Leftrightarrow\left\{{}\begin{matrix}a=\dfrac{3}{2}-b\\4\left(\dfrac{3}{2}-b\right)-5b=-2\end{matrix}\right.\\ \Leftrightarrow\left\{{}\begin{matrix}a=\dfrac{3}{2}-b\\6-9b=-2\end{matrix}\right.\\ \Leftrightarrow\left\{{}\begin{matrix}b=\dfrac{8}{9}\\a=\dfrac{11}{18}\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x+3y=\dfrac{8}{9}\\2x-y=\dfrac{18}{11}\end{matrix}\right.\\ \Leftrightarrow\left\{{}\begin{matrix}y=2x-\dfrac{18}{11}\\x+3\left(2x-\dfrac{18}{11}\right)=\dfrac{8}{9}\end{matrix}\right.\\ \Leftrightarrow\left\{{}\begin{matrix}x=\dfrac{82}{99}\\y=\dfrac{2}{99}\end{matrix}\right.\)
![](https://rs.olm.vn/images/avt/0.png?1311)
a, \(\left\{{}\begin{matrix}2x+2y=4\\2x-3y=9\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}5y=-5\\x=2-y\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}y=-1\\x=3\end{matrix}\right.\)
b, \(\left\{{}\begin{matrix}\dfrac{x}{2}=\dfrac{y}{3}\\x+y=10\end{matrix}\right.\)Theo tc dãy tỉ số bằng nhau
\(\dfrac{x}{2}=\dfrac{y}{3}=\dfrac{x+y}{2+3}=\dfrac{10}{5}=2\Rightarrow x=4;y=6\)
a.\(\Leftrightarrow\left\{{}\begin{matrix}3x+3y=6\\2x-3y=9\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}5x=15\\2x-3y=9\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x=3\\2.3-3y=9\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}x=3\\y=-1\end{matrix}\right.\)
b.\(\Leftrightarrow\left\{{}\begin{matrix}3x=2y\\x+y-10=0\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}3x-2y=0\\x+y-10=0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}3x-2y=0\\2x+2y=20\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}5x=20\\3x-2y=0\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}x=4\\3.4-2y=0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x=4\\y=6\end{matrix}\right.\)
![](https://rs.olm.vn/images/avt/0.png?1311)
Câu 1: ĐK: x khác -1/2, y khác -2
Đặt \(\sqrt[3]{\frac{2x+1}{y+2}}=t\) Từ phương trình thứ nhất ta có:
\(t+\frac{1}{t}=2\Leftrightarrow t^2-2t+1=0\Leftrightarrow t=1\)
=> \(\sqrt[3]{\frac{2x+1}{y+2}}=1\Leftrightarrow2x+1=y+2\Leftrightarrow2x-y=1\)
Vậy nên ta có hệ phương trình cơ bản: \(\hept{\begin{cases}2x-y=1\\4x+3y=7\end{cases}}\)Em làm tiếp nhé>
\(1,ĐKXĐ:\hept{\begin{cases}y\ne-2\\x\ne-\frac{1}{2}\end{cases}}\)
Đặt \(\sqrt[3]{\frac{2x+1}{y+2}}=a\left(a\ne0\right)\)
\(Pt\left(1\right)\Leftrightarrow a+\frac{1}{a}=2\)
\(\Leftrightarrow a^2+1=2a\)
\(\Leftrightarrow\left(a-1\right)^2=0\)
\(\Leftrightarrow a=1\)
\(\Leftrightarrow\sqrt[3]{\frac{2x+1}{y+2}}=1\)
![](https://rs.olm.vn/images/avt/0.png?1311)
\(\left\{{}\begin{matrix}2x-y=-3\left(1\right)\\x+3y=2\left(2\right)\end{matrix}\right.\)
Nhân \(3\) vào 2 vế của pt \(\left(1\right):-6x+3y=9\left(3\right)\)
Lấy \(\left(3\right)-\left(2\right):\)
\(-7x=7\)
\(\Leftrightarrow x=-1\)
Thay \(x=-1\) vào \(\left(1\right):2.\left(-1\right)-y=-3\)
\(\Rightarrow y=1\)
Vậy hệ pt có nghiệm duy nhất \(\left(x;y\right)=\left(-1;1\right)\)
e iu qua lý đi :<