K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

\(\Leftrightarrow\left\{{}\begin{matrix}-2x-2y=5\\2x-2y=12\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}-4y=17\\x-y=6\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}y=-\dfrac{17}{4}\\x=6+y=\dfrac{-17}{4}+6=\dfrac{7}{4}\end{matrix}\right.\)

4 tháng 1 2022

em cảm ơn ạ

 

8 tháng 5 2017

Hệ tương đương

\(\hept{\begin{cases}\left(x+y\right)^2-2xy-2\left(x+y\right)=6\\x+y-xy=5\end{cases}}\)

S = x + y, P = xy

=>

\(\hept{\begin{cases}S^2-2P-2S=6\\S-P=5\end{cases}}\)

Thay P = S - 5 vào PT trên

=> S2 - 2(S - 5) - 2S = 6

<=> S2 - 4S + 4 = 0

<=> S = 2

=> P = -3

=> x, y là 1 nghiệm của PT

X2 - 2X - 3 = 0

=>

x = -1, y = 3

Hoặc x = 3, y = -1

9 tháng 4 2017

Giải sách bài tập Toán 9 | Giải bài tập Sách bài tập Toán 9

Vậy hệ phương trình có nghiệm duy nhất (x; y) = (0; 3 - 5 ).

7 tháng 1 2020

Hint: đặt \(\frac{1}{2x-y}=a;\frac{1}{x+y}=b\)

15 tháng 10 2020

Cộng theo từng vế của hai phương trình ta được: 

 \(x^2-y^2=\left(2y+3x-6\right)-\left(2x+3y-6\right)\)

\(\Leftrightarrow\left(x+y\right)\left(x-y\right)=x-y\)

\(\Leftrightarrow\left(x+y-1\right)\left(x-y\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}x=y\\x=1-y\end{cases}}\)

TH1: \(x=y\)thay vào phương trình thứ nhất ta được: \(x^2=2x+3x-6\Leftrightarrow x^2-5x+6=0\)

\(\Leftrightarrow\left(x-3\right)\left(x-2\right)=0\Leftrightarrow\orbr{\begin{cases}x=3\\x=2\end{cases}}\)\(\Rightarrow\orbr{\begin{cases}y=3\\y=2\end{cases}}\)

TH2: \(x=1-y\)thay vào phương trình thứ nhất ta được:

\(\left(1-y\right)^2=2y+3\left(1-y\right)-6\)

\(\Leftrightarrow y^2-2y+1=-y-3\)

\(\Leftrightarrow y^2-y+4=0\)(vô nghiệm)

Vậy hệ phương trình có nghiệm \(\left(x,y\right)\in\left\{\left(3;3\right),\left(2;2\right)\right\}\)

15 tháng 10 2020

Trừ theo từng vế, nhầm.

16 tháng 2 2021

x=3 y=2'

28 tháng 2 2021

165 nha