Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Hệ tương đương
\(\hept{\begin{cases}\left(x+y\right)^2-2xy-2\left(x+y\right)=6\\x+y-xy=5\end{cases}}\)
S = x + y, P = xy
=>
\(\hept{\begin{cases}S^2-2P-2S=6\\S-P=5\end{cases}}\)
Thay P = S - 5 vào PT trên
=> S2 - 2(S - 5) - 2S = 6
<=> S2 - 4S + 4 = 0
<=> S = 2
=> P = -3
=> x, y là 1 nghiệm của PT
X2 - 2X - 3 = 0
=>
x = -1, y = 3
Hoặc x = 3, y = -1
Cộng theo từng vế của hai phương trình ta được:
\(x^2-y^2=\left(2y+3x-6\right)-\left(2x+3y-6\right)\)
\(\Leftrightarrow\left(x+y\right)\left(x-y\right)=x-y\)
\(\Leftrightarrow\left(x+y-1\right)\left(x-y\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x=y\\x=1-y\end{cases}}\)
TH1: \(x=y\)thay vào phương trình thứ nhất ta được: \(x^2=2x+3x-6\Leftrightarrow x^2-5x+6=0\)
\(\Leftrightarrow\left(x-3\right)\left(x-2\right)=0\Leftrightarrow\orbr{\begin{cases}x=3\\x=2\end{cases}}\)\(\Rightarrow\orbr{\begin{cases}y=3\\y=2\end{cases}}\)
TH2: \(x=1-y\)thay vào phương trình thứ nhất ta được:
\(\left(1-y\right)^2=2y+3\left(1-y\right)-6\)
\(\Leftrightarrow y^2-2y+1=-y-3\)
\(\Leftrightarrow y^2-y+4=0\)(vô nghiệm)
Vậy hệ phương trình có nghiệm \(\left(x,y\right)\in\left\{\left(3;3\right),\left(2;2\right)\right\}\)
\(\Leftrightarrow\left\{{}\begin{matrix}-2x-2y=5\\2x-2y=12\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}-4y=17\\x-y=6\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}y=-\dfrac{17}{4}\\x=6+y=\dfrac{-17}{4}+6=\dfrac{7}{4}\end{matrix}\right.\)
em cảm ơn ạ