Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\Delta=\left(C^x_4\right)^2-4.C^2_3.C^1_3=\left(\frac{4!}{x!\left(4-x\right)!}\right)^2-36\)
Pt có nghiệm \(\Leftrightarrow\Delta\ge0\)
\(\Leftrightarrow x!.\left(4-x\right)!\le4\)
x>=5 -> ko tồn tại (4-x)!
-> x<=4
Thay vào ta thấy x=2 tm
-> \(\Delta=0\)
->\(y=\frac{-\left(-C^x_4\right)}{2}=\frac{C^2_4}{2}=3\)
Vậy pt có nghiệm duy nhất y=3
Ta có : Cy(x+1) : Cy+1(x) = 6:5
<=> 5(x-1)(y+1) = 6(x-y)(x-y+1) (1)
Lại có : Cy(x+1) : Cy-1(x) = 6:2
<=> x+1=3y (2)
Thay (2) vào (1) => 9y^2-27y=0
<=> y=3 hoặc y=0(loại)
=> x=8
1.
Các hàm \(sinx;sin\frac{x}{2};sin\frac{x}{3};...;sin\frac{x}{10}\) có chu kì lần lượt là \(2\pi;4\pi;6\pi;...;20\pi\)
\(\Rightarrow\) Chu kì của hàm đã cho là \(BCNN\left(2\pi;4\pi;...;20\pi\right)=15120\pi\)
2.
a.
\(y=cos^22x+3cos2x+3\)
\(y=\left(cos2x+1\right)\left(cos2x+2\right)+1\ge1\Rightarrow y_{min}=1\) khi \(cos2x=-1\)
\(y=\left(cos2x-1\right)\left(cos2x+4\right)+7\le7\Rightarrow y_{max}=7\) khi \(cos2x=1\)
b.
Đặt \(a=4sinx-3cosx\Rightarrow a^2\le\left(4^2+\left(-3\right)^2\right)\left(sin^2x+cos^2x\right)=25\)
\(\Rightarrow-5\le a\le5\)
\(y=a^2-4a+1\) với \(a\in\left[-5;5\right]\)
\(y=\left(a-2\right)^2-3\ge-3\Rightarrow y_{min}=-3\) khi \(a=2\)
\(y=\left(a-9\right)\left(a+5\right)+46\le46\Rightarrow y_{max}=46\) khi \(a=-5\)
Xét khai triển:
\(\left(x+1\right)^n=C_n^0+C_n^1x+C_n^2x^n+C_n^3x^3+...+C_n^nx^n\)
Đạo hàm 2 vế:
\(n\left(x+1\right)^{n-1}=C_n^1+2C_n^2x+3C_n^3x^2+...+nC_n^nx^{n-1}\)
Thay \(x=1\) vào ta được:
\(n.2^{n-1}=C_n^1+2C_n^2+3C_n^3+...+nC_n^2=256n\)
\(\Rightarrow2^{n-1}=256=2^8\Rightarrow n=9\)
Câu 2:
\(\left(x-2\right)^{80}=a_0+a_1x+a_2x^2+a_3x^3+...+a_{80}x^{80}\)
Đạo hàm 2 vế:
\(80\left(x-2\right)^{79}=a_1+2a_2x+3a_3x^2+...+80a_{80}x^{79}\)
Thay \(x=1\) ta được:
\(80\left(1-2\right)^{79}=a_1+2a_2+3a_3+...+80a_{80}\)
\(\Rightarrow S=80.\left(-1\right)^{79}=-80\)
1) b) cos5x + cos3x + cosx = 0
<=> (cos5x + cos3x) + cosx = 0
<=> 2.cos4x.cos(-x) + cosx = 0
<=> cosx (2cos4x + 1) = 0
<=> cosx = 0 or 2cos4x + 1 = 0
<=> x = π/2 + kπ or cos4x = 1/2
<=> x = π/2 + kπ or 4x = \(\pm\)π/3 + kπ
<=> x = π/2 + kπ or x = \(\pm\)π/12 + kπ/4 (k thuộc Z)
Vậy ...