K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

31 tháng 1 2018

Với m = √2, phương trình (**) trở thành: 0x = 0

Phương trình nghiệm đúng với mọi x ∈ R, khi đó y = 2x – √2

Vậy với m = √2, hệ (I) có vô số nghiệm dạng (x ; 2x - √2), x ∈ R

6 tháng 3 2016

ố ô dài thế tôi làm 1 nửa thôi nhá
 

8 tháng 4 2017

a.

Thay m=\(-\sqrt{2}\) ta được

\(\left\{{}\begin{matrix}2x-y=-\sqrt{2}\\4x-\left(-\sqrt{2}\right)^2=2\sqrt{2}\end{matrix}\right.\)\(\Leftrightarrow\)

\(\)\(\left\{{}\begin{matrix}2x-y=-\sqrt{2}\\4x+2y=2\sqrt{2}\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}2x-y=-\sqrt{2}\\2x+y=\sqrt{2}\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}-2y=-2\sqrt{2}\\2x+y=\sqrt{2}\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}y=-\sqrt{2}\\x=\sqrt{2}\end{matrix}\right.\)

10 tháng 4 2017

a. Với \(m=-\sqrt{2}\), ta có hệ : \(\left\{{}\begin{matrix}2x-y=-\sqrt{2}\\4x-2y=2\sqrt{2}\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}2x-y=-\sqrt{2}\\2x-y=\sqrt{2}\end{matrix}\right.\)

Vậy phương trình vô nghiệm.

b. Với \(m=\sqrt{2}\), ta có hệ : \(\left\{{}\begin{matrix}2x-y=\sqrt{2}\\4x-2y=2\sqrt{2}\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}2x-y=\sqrt{2}\\2x-y=\sqrt{2}\end{matrix}\right.\)

Vậy phương trình có vô số nghiệm.

c. Với \(m=1\), ta có hệ : \(\left\{{}\begin{matrix}2x-y=1\\4x-y=2\sqrt{2}\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}y=2x-1\\4x-2x+1=2\sqrt{2}\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}y=2x-1\\x=\dfrac{2\sqrt{2}-1}{2}\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}y=2\sqrt{2}-2\\x=\dfrac{2\sqrt{2}-1}{2}\end{matrix}\right.\)

Vậy hệ có nghiệm duy nhất \(\left(x;y\right)=\left(\dfrac{2\sqrt{2}-1}{2};2\sqrt{2}-2\right).\)

6 tháng 9 2020

Hệ có nghiệm duy nhất khi và chỉ khi \(\frac{m-1}{2}\ne\frac{-m}{-1}\Leftrightarrow m\ne-1\)

Xét m=0 thì x=1, y=-3 --> thỏa mãn 

Xét m khác 0 thì nhân 2 vế của đẳng thức thứ 2 cho m ---> \(\hept{\begin{cases}\left(m-1\right)x-my=3m-1\\2mx-my=m^2+5m\end{cases}}\)

Lấy đẳng thức 2 trừ đẳng thức 1 vế theo vế--> Dễ dàng tính được x=m+1, y=m-3 ---> thế vào điều kiện:

\(x^2-y^2< 4\Leftrightarrow\left(m+1\right)^2-\left(m-3\right)^2< 4\Leftrightarrow8m-8< 4\Leftrightarrow m< \frac{3}{2}\)

Đối chiếu điều kiện có nghiệm duy nhất---> Kết luận \(m< \frac{3}{2},m\ne-1\)

11 tháng 1 2018

a) Dùng hệ thức Viét ta có:

\(x_1x_2=\dfrac{-35}{1}=-35\\ \Leftrightarrow7x_2=-35\\ \Leftrightarrow x_2=-5\\ x_1+x_2=\dfrac{-m}{1}=-m\\ \Leftrightarrow7+\left(-5\right)=-m\\ \Leftrightarrow-m=2\\ \Leftrightarrow m=-2\)

b) Dùng hệ thức Viét ta có:

\(x_1+x_2=\dfrac{-\left(-13\right)}{1}=13\\ \Leftrightarrow12,5+x_2=13\\ \Leftrightarrow x_2=0,5\\ x_1x_2=\dfrac{m}{1}=m\\ \Leftrightarrow12,5\cdot0,5=m\\ \Leftrightarrow m=6,25\)

c) Dùng hệ thức Viét ta có:

\(x_1+x_2=\dfrac{-3}{4}\\ \Leftrightarrow-2+x_2=\dfrac{-3}{4}\\ \Leftrightarrow x_2=\dfrac{5}{4}\\ x_1x_2=\dfrac{-m^2+3m}{4}\\ \Leftrightarrow4x_1x_2=-m^2+3m\\ \Leftrightarrow4\cdot\left(-2\right)\cdot\dfrac{5}{4}+m^2-3m=0\\ \Leftrightarrow m^2-3m-10=0\\ \Leftrightarrow m^2-5m+2m-10=0\\ \Leftrightarrow m\left(m-5\right)+2\left(m-5\right)=0\\ \Leftrightarrow\left(m+2\right)\left(m-5\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}m=-2\\m=5\end{matrix}\right.\)

d) Dùng hệ thức Viét ta có:

\(x_1x_2=\dfrac{5}{3}\\ \Leftrightarrow\dfrac{1}{3}x_2=\dfrac{5}{3}\\ \Leftrightarrow x_2=5\\ x_1+x_2=\dfrac{-\left[-2\left(m-3\right)\right]}{3}=\dfrac{2\left(m-3\right)}{3}=\dfrac{2m-6}{3}\\ \Leftrightarrow3\left(x_1+x_2\right)=2m-6\\ \Leftrightarrow3\left(\dfrac{1}{3}+5\right)=2m-6\\ \Leftrightarrow3\cdot\dfrac{16}{3}+6=2m\\ \Leftrightarrow16+6=2m\\ \Leftrightarrow22=2m\\ \Leftrightarrow m=11\)

11 tháng 1 2018

đúng hay sai z bạn Mới vô

10 tháng 1 2018

a)   Với m = 0 thì ta có hệ:

\(\hept{\begin{cases}x-y=1\\x-y=2\end{cases}}\)

Ta thấy ngay phương trình vô nghiệm.

b) \(\hept{\begin{cases}\left(m+1\right)x-y=m+1\\x+\left(m-1\right)y=2\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}\left(m+1\right)x-y=m+1\\\left(m+1\right)x+\left(m^2-1\right)y=2\left(m+1\right)\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}\left(m+1\right)x-y=m+1\\m^2y=m+1\end{cases}}\)

Với m = 0 : phương trình vô nghiệm.

Với \(m\ne0\), ta có : \(\hept{\begin{cases}\left(m+1\right)x-\frac{m+1}{m^2}=m+1\\y=\frac{m+1}{m^2}\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}x=\frac{m^2+1}{m^2}\\y=\frac{m+1}{m^2}\end{cases}}\)

Vậy thì \(S=x+y=\frac{m^2+m+2}{m^2}=1+\frac{1}{m}+\frac{2}{m^2}\)

Đặt \(\frac{1}{m}=t\Rightarrow S=2t^2+t+1=2\left(t^2+\frac{1}{2}t+\frac{1}{16}\right)+\frac{7}{8}\)

\(=2\left(t+\frac{1}{4}\right)^2+\frac{7}{8}\ge\frac{7}{8}\)

Vây minS = \(\frac{7}{8}\) khi m = -4.

10 tháng 2 2019

BẠN NÀO CÓ THỂ GIẢI CHO TỚ BÀI NÀY CHO MỘT HÌNH VUÔNG CÓ CHU VI 16 CM.LẤY MỖI CÃNH HÌNH VUÔNG LÀM ĐƯỜNG KÍNH, NGƯỜI TA VẼ 4 NỬ HÌNH TRÒN.CHÚNG GIAO NHAU TẠO THÀNH BÔNG HOA .TÍNH DIỆN TÍCH BÔNG HOA ĐÓ

25 tháng 5 2019

thay m= 3 vào phương trình đã cho ta duoc