K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

13 tháng 3 2017

2 x − y = 3 x 2 + y = 5 ⇔ x 2 + 2 x = 8 2 x − y = 3 ⇔ x 2 + 2 x − 8 = 0    ( 1 ) y = 2 x − 3           ( 2 )

Giải (1):  Δ ' = 9  ;  x 1 = 2  ,  x 2 = − 4

Thay vào (2): Với  x = 2   t h ì   y = 2.2 − 3 = 1

Với x = − 4   t h ì   y = 2. ( − 4 ) − 3 = − 11

Vậy nghiệm của hệ phương trình là:  x , y ∈ 2 ; 1 , − 4 ; − 11

31 tháng 10 2016

Bài 1:

Đặt \(\hept{\begin{cases}S=x+y\\P=xy\end{cases}}\) hpt thành:

\(\hept{\begin{cases}S^2-P=3\\S+P=9\end{cases}}\)\(\Leftrightarrow\hept{\begin{cases}S^2-P=3\\S=9-P\end{cases}}\Leftrightarrow\left(9-P\right)^2-P=3\)

\(\Leftrightarrow\orbr{\begin{cases}P=6\Rightarrow S=3\\P=13\Rightarrow S=-4\end{cases}}\).Thay 2 trường hợp S và P vào ta tìm dc

\(\hept{\begin{cases}x=3\\y=0\end{cases}}\)\(\hept{\begin{cases}x=0\\y=3\end{cases}}\)

1 tháng 11 2016

Câu 3: ĐK: \(x\ge0\)

Ta thấy \(x-\sqrt{x-1}=0\Rightarrow x=\sqrt{x-1}\Rightarrow x^2-x+1=0\) (Vô lý), vì thế \(x-\sqrt{x-1}\ne0.\)

Khi đó \(pt\Leftrightarrow\frac{3\left[x^2-\left(x-1\right)\right]}{x+\sqrt{x-1}}=x+\sqrt{x-1}\Rightarrow3\left(x-\sqrt{x-1}\right)=x+\sqrt{x-1}\)

\(\Rightarrow2x-4\sqrt{x-1}=0\)

Đặt \(\sqrt{x-1}=t\Rightarrow x=t^2+1\Rightarrow2\left(t^2+1\right)-4t=0\Rightarrow t=1\Rightarrow x=2\left(tm\right)\)

19 tháng 8 2017

bạn thử nhân cả 2 vế của phương trình1 với x^2+y^2 đi

20 tháng 8 2017

<=>\(\hept{\begin{cases}x^3+y^3=1\\x^2\left(x^3-1\right)+y^2\left(y^3-1\right)=0\end{cases}}\)

<=>\(\hept{\begin{cases}x^3+y^3=1\\x^2y^3+x^3y^2=0\end{cases}}\)

Đặt S=x+y;P=xy

khi đó: \(\hept{\begin{cases}S^3-3SP=1\\P^2S=0\end{cases}}\)

sau đó giải hệ pt . kết wa là (0;1);(1:0)

21 tháng 10 2019

\(\Leftrightarrow\hept{\begin{cases}x+y=1,5\\\sqrt{x^2+2}+\sqrt{y^2+3}=3,5\end{cases}}\)

\(\Rightarrow\sqrt{\left(1,5-y\right)^2+2}+\sqrt{y^2+3}=3,5\)

\(\Leftrightarrow\sqrt{\left(1,5-y\right)^2+2}=3,5-\sqrt{y^2+3}\)

Bình phương 2 vế 2 lần là tìm được y thế vô tìm được x

10 tháng 9 2020

1) \(\hept{\begin{cases}x^2+y^2-xy=1\\x+x^2y=2y^3\end{cases}\Leftrightarrow}\hept{\begin{cases}x^2+y^2=1+xy\\x\left(1+xy\right)=2y^3\end{cases}\Rightarrow x\left(x^2+y^2\right)=2y^3}\)

\(\Leftrightarrow\left(x^3-y^3\right)+\left(xy^2-y^3\right)=0\Leftrightarrow\left(x-y\right)\left(x^2+y^2+xy\right)+y^2\left(x-y\right)=0\)

\(\Leftrightarrow\left(x-y\right)\left(x^2+2y^2+xy\right)=0\Leftrightarrow\orbr{\begin{cases}x=y\\x^2+2y^2+xy=0\end{cases}}\)

+) \(x=y\Rightarrow\hept{\begin{cases}y^2+y^2-y^2=1\\y+y^3=2y^3\end{cases}\Rightarrow}x=y=\pm1\)

+) \(x^2+2y^2+xy=0\)Vì y=0 không là nghiệm của hệ nên ta chia 2 vế phương trình cho y2:

\(\Rightarrow\left(\frac{x}{y}\right)^2+\frac{x}{y}+2=0\)( Vô nghiệm)

Vậy hệ có nghiệm (1;1),(-1;-1).

2/ \(\hept{\begin{cases}x+y=\sqrt{x+3y}\\x^2+y^2+xy=3\end{cases}\Rightarrow\hept{\begin{cases}x^2+y^2+2xy=x+3y\\x^2+y^2+xy=3\end{cases}}}\Rightarrow xy=x+3y-3\)

\(\Leftrightarrow\left(x-xy\right)+\left(3y-3\right)\Leftrightarrow\left(x-3\right)\left(1-y\right)=0\Leftrightarrow\orbr{\begin{cases}x=3\Rightarrow y\in\varnothing\\y=1\Rightarrow x=1\end{cases}}\)

Vậy hệ có nghiệm (1;1).

2 tháng 11 2017

câu này quen ha

cái này giả sử x+1>=y-5, rồi cho chúng = nhau

hoặc liên hợp cũng được (PT1)

21 tháng 2 2019

Câu 1: ĐK: x khác -1/2, y khác -2

Đặt \(\sqrt[3]{\frac{2x+1}{y+2}}=t\) Từ phương trình thứ nhất ta có:

\(t+\frac{1}{t}=2\Leftrightarrow t^2-2t+1=0\Leftrightarrow t=1\)

=> \(\sqrt[3]{\frac{2x+1}{y+2}}=1\Leftrightarrow2x+1=y+2\Leftrightarrow2x-y=1\)

Vậy nên ta có hệ phương trình cơ bản: \(\hept{\begin{cases}2x-y=1\\4x+3y=7\end{cases}}\)Em làm tiếp nhé>

21 tháng 2 2019

\(1,ĐKXĐ:\hept{\begin{cases}y\ne-2\\x\ne-\frac{1}{2}\end{cases}}\)

Đặt \(\sqrt[3]{\frac{2x+1}{y+2}}=a\left(a\ne0\right)\)

\(Pt\left(1\right)\Leftrightarrow a+\frac{1}{a}=2\)

             \(\Leftrightarrow a^2+1=2a\)

             \(\Leftrightarrow\left(a-1\right)^2=0\)

            \(\Leftrightarrow a=1\)

           \(\Leftrightarrow\sqrt[3]{\frac{2x+1}{y+2}}=1\)

6 tháng 3 2016

ố ô dài thế tôi làm 1 nửa thôi nhá
 

15 tháng 1 2017

giải phương trình 1

x^2-4x+4-y^2+2y-1=0

(x-2)^2-(y-1)^2=0

(x-2-y+1)=0 hoặc (x-2+y-1)=0

thế là thế 1 ẩn theo ẩn còn lại thôi rồi cho vào phương trình 2

30 tháng 3 2019

giải phương trình 1 x^2-4x+4-y^2+2y-1=0 (x-2)^2-(y-1)^2=0 (x-2-y+1)=0 hoặc (x-2+y-1)=0 thế là thế 1 ẩn theo ẩn còn lại thôi rồi cho vào phương trình 2