Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: \(AB=\sqrt{15^2-12^2}=9\left(cm\right)\)
b: Xét ΔBAM vuông tại A và ΔBNM vuông tại N có
BM chung
góc ABM=góc NBM
=>ΔBAM=ΔBNM
=>MA=MN
c: Xét ΔBDC có
BE là đừog cao, là phân giác
nên ΔBDC cân tại B
=>BD=BC
BA+AD=BD
BN+NC=BC
mà BD=BC; BA=BN
nên AD=NC
Bài làm
~ Mik hỗ trợ làm bài, chú chả bảo anh làm bài này cho :< Giận thật sự :< ~
a) Xét tam giác ABD và tam giác AHD có:
AB = AH ( gt )
^BAD = ^CAD ( Do AD phân giác )
AD chung
=> Tam giác ABD = tam giác AHD ( c.g.c )
=> ^ABD = ^AHB ( hai góc tương ứng )
b) Xét tam giác AHE và tam giác ABC có:
AB = AH ( gt )
^ABC chung
^ABD = ^AHD ( cmt )
=> Tam giác AHE = tam giác ABC ( g.c.g )
c) Vì tam giác ABD = tam giác AHD ( cmt )
=> BD = DH ( hai cạnh tương ứng )
Vì tam giác AHE = tam giác ABC
=> EH = BC ( hai cạnh tương ứng )
Ta có: BD + DC = BC
DH + ED = EH
Mà EH = BC, BD = DH ( cmt )
=> DC = ED (1)
~ Tự chứng minh tiếp, bài khá gắt ~
a: Xét ΔAMN có
Ax vừa là đường cao, vừa là phân giác
=>ΔAMN cân tại A
b: BE//AC
=>góc BEM=góc ANE
=>góc BEM=góc BME
=>BE=BM
Xét ΔDEB và ΔDNC có
góc DBE=góc DCN
DB=DC
góc BDE=góc NDC
=>ΔDEB=ΔDNC
=>BE=NC
=>BE=CN
Bạn tự vẽ hình nha!!!
a.
AB // MN
=> ABE = BEN (2 góc so le trong)
mà ABE = EBN (BD là tia phân giác của ABC)
=> BEN = EBN
=> Tam giác NBE cân tại N
=> NB = NE.
b.
AB // MN
mà AB _I_ AC
=> AC _I_ MN
Xét tam giác MAN và tam giác MNC có:
MA = MC (M là trung điểm của AC)
AMN = CMN ( = 90 )
MN là cạnh chung
=> Tam giác MAN = Tam giác MNC (c.g.c)
=> NAC = NCA
c.
AB // MN
=> BAN = ANM (2 góc so le trong) (1)
=> ABN = MNC (2 góc đồng vị)
mà MNC = MNA (tam giác MAN = tam giác MCN)
=> ABN = MNA (2)
Từ (1) và (2)
=> BAN = ABN
=> Tam giác NAB cân tại N
=> NB = NA
mà NB = NE (theo câu a)
=> NA = NE
=> Tam giác NAE cân tại N.
Vẽ hình nhé