![](https://rs.olm.vn/images/avt/0.png?1311)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
![](https://rs.olm.vn/images/avt/0.png?1311)
![](https://rs.olm.vn/images/avt/0.png?1311)
4a2 + b2 - 4a + 2b + \(\dfrac{5}{2}\) > 0
\(\Leftrightarrow\left(4a^2-4a+1\right)+\left(b^2+2b+1\right)+\dfrac{1}{2}>0\)
\(\Leftrightarrow\left(2a-1\right)^2+\left(b+1\right)^2+\dfrac{1}{2}>0\)
Vì \(\left(2a-1\right)^2+\left(b+1\right)^2\ge0\Rightarrow\left(2a-1\right)^2+\left(b+1\right)^2+\dfrac{1}{2}\ge\dfrac{1}{2}>0\)
![](https://rs.olm.vn/images/avt/0.png?1311)
A= \(x^2-20x+101=x^2-2.x.10+10^2+1=\left(x-10\right)^2+1\ge1\)
=> GTNN của A =1 khi x-10=0=> x=10
B= \(4a^2+4a+2=\left(2a+1\right)^2+1\ge1\)
=> GTNN của B=1 khi 2a+1=0=> a=-1/2
![](https://rs.olm.vn/images/avt/0.png?1311)
Sửa lại đề bài: 1 / 2a- b
( MÁY MK KO ĐÁNH ĐC PHÂN SỐ MONG BN THÔNG CẢM)
mới lm đc nhé bn!
a) ĐKXĐ: bn tự lm nhé !
bn biến đổi: 2a3-b+2a-a2b = (2a-b) + ( 2a3-a2b) = (2a-b) + a2(2a-b) = (2a-b)(a2+1)
rồi bn nhân 1 / 2a+b với a2+1 rồi trừ 2 phân thức với nhau sẽ ra 0 => A=0
![](https://rs.olm.vn/images/avt/0.png?1311)
\(4a^2+b^2=5ab\)
\(4a^2-5ab+b^2=0\)
\(4a^2-4ab-ab+b^2=0\)
\(4a\left(a-b\right)-b\left(a-b\right)=0\)
\(\left(a-b\right)\left(4a-b\right)=0\)
\(\left[\begin{array}{nghiempt}a-b=0\\4a-b=0\end{array}\right.\)
\(\left[\begin{array}{nghiempt}a=b\\4a=b\end{array}\right.\)
mà \(2a>b>0\)
\(\Rightarrow a=b\)
Thay a = b vào M, ta có:
\(M=\frac{b\times b}{4b^2-b^2}\)
\(=\frac{b^2}{3b^2}\)
\(=\frac{1}{3}\)
Vậy . . .
![](https://rs.olm.vn/images/avt/0.png?1311)
Sửa đề: \(a^4+4b^4\)
\(=\left(a^2+2b^2\right)^2-4a^2b^2\)
\(=\left(a^2-2ab+2b^2\right)\left(a^2+2ab+2b^2\right)\)
![](https://rs.olm.vn/images/avt/0.png?1311)
![](https://rs.olm.vn/images/avt/0.png?1311)
ta có: \(4a^2+b^2=5ab< =>4a^2-5ab+b^2=0< =>4a^2-4ab-ab+b^2=0< =>4a\left(a-b\right)-b\left(a-b\right)=0< =>\left(a-b\right)\left(4a-b\right)=0\)
do 2a>b>0=>4a>b>0=> 4a-b khác 0
=> a-b=0<=>a=b
P=\(\dfrac{ab}{4a^2-b^2}=\dfrac{ab}{\left(2a-b\right)\left(2a+b\right)}=\dfrac{ab}{\left(2a-a\right)\left(2a+a\right)}=\dfrac{a^2}{3a^2}=\dfrac{1}{3}\)
vậy............
chúc bạn hcoj tốt ^^
ý là cm cái đó hả
\(4a^2+5-4a+b^2>2b\)
\(\Rightarrow4a^2+5-4a+b^2-2b>0\)
\(\Rightarrow\left(4a^2-4a+1\right)+\left(b^2-2b+1\right)+3>0\)
\(\Rightarrow\left(2a-1\right)^2+\left(b-1\right)^2+3>0\)
Dễ thấy: \(\left(2a-1\right)^2\ge0\forall a;\left(b-1\right)^2\ge0\forall b\)
\(\Rightarrow\left(2a-1\right)^2+\left(b-1\right)^2\ge0\forall a,b\)
\(\Rightarrow\left(2a-1\right)^2+\left(b-1\right)^2+3\ge3>0\forall a,b\)