Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Tứ giác AEDF là hình bình hành.
Vì có DE // AF, DF // AE (gt) (theo định nghĩa)
b) Hình bình hành AEDF là hình thoi khi AD là tia phân giác của góc A. Vậy nếu D là giao điểm của tia phân giác góc A với cạnh BC thì AEDF là hình thoi.
c) Nếu ΔABC vuông tại A thì AEDF là hình chữ nhật (vì là hình bình hành có một góc vuông).
Nếu ABC vuông tại A và D là giao điểm của tia phân giác của góc A với cạnh BC thì AEDF là hình vuông (vì vừa là hình chữ nhật, vừa là hình thoi).
Em tham khảo tại link dưới đây nhé:
Câu hỏi của Trần Thị Vân Ngọc - Toán lớp 8 - Học toán với OnlineMath
a) Xét tứ giác DMEA có 3 góc vuông nên DMEA là hình chữ nhật.
Theo tính chất hình chữ nhật thì AM = DE.
b) Do DMEA là hình chữ nhật nên DE giao AM tại trung điểm mỗi đường. Do đó, I cũng là trung điểm AM.
Gọi K, H lần lượt là trung điểm của AB và AC.
Xét tam giác BAM có K, I lần lượt là trung điểm của AB và AM nên KI là đường trung bình.
Vậy IK// BC. Tương tự IH//BC.
Lại có KE//BC nên I thuộc KH.
Do KH cố định nên ta có: Khi M di chuyển trên đoạn BC thì I di chuyển trên đoạn KH.
c) Ta đã có DE = AM nên DE ngắn nhất khi và chỉ khi AM có độ dài ngắn nhất.
Lại có AM là đường xiên nên luôn luôn lớn hơn hoặc bằng đường cao AH.
Vậy thì AM có độ dài ngắn nhất khi AM trung với AH tức là M trùng H.
=> DE có độ dài ngắn nhất khi M là chân đường vuông góc hạ từ A xuống BC.
a: Xét tứ giác AEDF có
\(\widehat{AED}=\widehat{AFD}=\widehat{FAE}=90^0\)
Do đó: AEDF là hình chữ nhật
b: Ta có: ΔABC vuông tại A
mà AD là đường trung tuyến
nên AD=BC/2=5(cm)
mà AD=EF(AEDF là hình chữ nhật)
nên EF=5cm
c: Để AEDF là hình vuông thì AD là tia phân giác của góc FAE
=>AD là tia phân giác của góc BAC
Vậy: Khi D là chân đường phân giác kẻ A xuống BC thì AEDF là hình vuông
a, \(MD//AB,AB\perp AC\left(gt\right)\Rightarrow MD\perp AC\Rightarrow\widehat{MDA}=90^0\)
\(ME//AC,AB\perp AC\left(gt\right)\Rightarrow ME\perp AB\Rightarrow\widehat{MEA}=90^0\)
Tứ giác MDAE có 3 góc vuông nên là hình chữ nhật.
b, Hình chữ nhật có 1 đường chéo là đường phân giác thì là hình vuông
Do đó: \(MDAE\) là hình vuông \(\Leftrightarrow\) AM là tia phân giác của \(\widehat{DAE}\)
Vậy M là giao điểm giữa tia p/g của \(\widehat{DAE}\) và cạnh BC thì MDAE là hình vuông.
c, MDAE là hình chữ nhật (cmt) \(\Rightarrow DE=AM\) (tính chất của HCN)
AM ngắn nhất khi AM là đường cao.
Vậy DE ngắn nhất khi AM là đường cao của \(\Delta ABC.\)
Chúc bạn học tốt.
a) Tứ giác AEDF là hình bình hành.
Vì có DE // AF, DF // AE (gt) (theo định nghĩa)
b) Hình bình hành AEDF là hình thoi khi AD là tia phân giác của góc A. Vậy nếu D là giao điểm của tia phân giác góc A với cạnh BC thì AEDF là hình thoi.
c) Nếu ΔABC vuông tại A thì AEDF là hình chữ nhật (vì là hình bình hành có một góc vuông).
d) Nếu ABC vuông tại A và D là giao điểm của tia phân giác của góc A với cạnh BC thì AEDF là hình vuông (vì vừa là hình chữ nhật, vừa là hình thoi).
A E F C D B
a) Tứ giác AEDF là hình bình hành.
Vì có DE // AF, DF // AE (gt)
(theo định nghĩa)
b) Hình bình hành AEDF là hình thoi khi AD là tia phân giác của góc A với cạnh BC thì AEDF là hình thoi.
c) Nếu ∆ABC vuông tại A thì AEDF là hình chữ nhật (vì là hình bình hành có một góc vuông).
Nếu ABC vuông tại A và D là giao điểm của tia phân giác của góc A với cạnh BC thì AEDF là hình vuông (vì vừa là hình chữ nhật vừa là hình thoi).
Bài 1
Cho tam giác ABC đều, M bất kì thuộc BC. Qua M kẻ đường song song với AC cắt AB ở D. Qua M kẻ đường song song với AB cắt AC ở E, I là trung điểm AM
a) Cm D, I, E thẳng hàng
b) khi M di chuyển trên BC thì I di chuyển trên đường nào
Bài 2
Cho tam giác ABC vuông tại A. Gọi N là điểm đối xứng của A qua trung điểm M của BC
a) tứ giác ACNB là hình gì
b)1 điểm H chạy trên BM, P là điểm đối xứng của A qua H, P chạy trên đường nào
c) Xác định vị trí H trên BM để AP ngắn nhất
d) Xác định vị trí chủa H trên BM để tam giác anP cân tại N
dài quá bạn ơi