Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Tham khảo bài 8 trong link: Câu hỏi của Nguyễn Linh Chi - Toán lớp - Học toán với OnlineMath
Tham khảo link này : https://olm.vn/hoi-dap/detail/223163065606.html
a) \(\frac{\sqrt{2x^3}}{\sqrt{8x}}=\sqrt{\frac{2x^3}{8x}}=\frac{1}{2}x\)
b) \(\left(3-\sqrt{5}\right)\left(x+\sqrt{5}\right)=3^2-\left(\sqrt{5}\right)^2=9-5=4\)
c) \(\sqrt{\frac{3x^2y^4}{27}}=0\)
\(y\ne0\)
Thì \(\sqrt{\frac{3x^2y^4}{27}}=\frac{1}{3}xy^2\)
e) \(\frac{y}{x^2}\sqrt{\frac{36x^4}{y^2}}=\frac{y}{x^2}.\frac{6x^2}{\left|y\right|}=\frac{6y}{\left|y\right|}\)
Vì y < 0 nên \(\left|y\right|=-y\)
Vậy \(\frac{6y}{\left|y\right|}=\frac{6y}{-y}=-6\)
f) \(\frac{\sqrt{99999999}}{\sqrt{11111111}}=\sqrt{\frac{99999999}{11111111}}=\sqrt{9}=3\)
a)Đặt \(\frac{1}{x-1}=t;\frac{1}{y-1}=m\)
Ta có: \(\frac{5}{x-1}+\frac{1}{y-1}=10=5.\frac{1}{x-1}+\frac{1}{y-1}=10=5t+m=10\)
\(\frac{1}{x-1}+\frac{3}{y-1}=t+3.\frac{1}{y-1}=t+3m=18\)
Từ đây ta có HPT \(\hept{\begin{cases}5t+m=10\left(1\right)\\t+3m=18\left(2\right)\end{cases}}\)
\(5t+m=10\Rightarrow5t=10-m\Rightarrow t=\frac{10-m}{5}\),thay vào (2) ta có:
\(\frac{10-m}{5}+3m=18\Rightarrow\frac{10-m+15m}{5}=18\Rightarrow\frac{10+14m}{5}=18\)
=>10+14m=18.5=90=>14m=90-10=>14m=80=>m=\(\frac{40}{7}\)
Thay m=40/7 vào (1)=>t=6/7
Vì \(\frac{1}{x-1}=t\Rightarrow\frac{1}{x-1}=\frac{6}{7}\Rightarrow\left(x-1\right).6=7\Rightarrow6x-6=7\Rightarrow x=\frac{13}{6}\)
Vì \(\frac{1}{y-1}=m\Rightarrow\frac{1}{y-1}=\frac{40}{7}\Rightarrow\left(y-1\right).40=7\Rightarrow40y-40=7\Rightarrow y=\frac{47}{40}\)
Vậy x=13/6;y=47/40 thì thỏa mãn HPT
mk hết hè lên lp 8 nên cũng không chắc 100% nhé
b/ Đặt \(\frac{1}{x+2y}=a\) ; \(\frac{1}{x-2y}=b\) , ta có hệ phương trình: \(\hept{\begin{cases}4a-b=1\\20a+3b=1\end{cases}\Rightarrow\hept{\begin{cases}b=4a-1\\20a+3\left(4a-1\right)=1\end{cases}\Rightarrow}\hept{\begin{cases}b=4a-1\\20a+12a-3=1\end{cases}}\Rightarrow\hept{\begin{cases}b=4a-1\\a=\frac{1}{8}\end{cases}\Rightarrow}\hept{\begin{cases}b=-\frac{1}{2}\\a=\frac{1}{8}\end{cases}}}\)
\(\Rightarrow\hept{\begin{cases}\frac{1}{x-2y}=-\frac{1}{2}\\\frac{1}{x+2y}=\frac{1}{8}\end{cases}\Rightarrow\hept{\begin{cases}x-2y=-2\\x+2y=8\end{cases}\Rightarrow}\hept{\begin{cases}x=-2+2y\\-2+2y+2y=8\end{cases}\Rightarrow}\hept{\begin{cases}x=-2+2y\\y=\frac{5}{2}\end{cases}\Rightarrow}\hept{\begin{cases}x=3\\y=\frac{5}{2}\end{cases}}}\)
Vậy x = 3 , y = 5/2
c/ Đặt \(\frac{1}{x-3}=a\) ; \(\frac{1}{y+2}=b\) , ta có hệ phương trình:
\(\hept{\begin{cases}12a-5b=63\\8a+15b=-13\end{cases}\Rightarrow\hept{\begin{cases}b=\frac{12a-63}{5}\\8a+15\left(\frac{12a-63}{5}\right)=-13\end{cases}}}\)\(\Rightarrow\hept{\begin{cases}b=\frac{12a-63}{5}\\8a+\frac{180a-945}{5}=-13\end{cases}}\)
\(\Rightarrow\hept{\begin{cases}b=\frac{12a-63}{5}\\a=4\end{cases}\Rightarrow\hept{\begin{cases}b=-3\\a=4\end{cases}}}\)\(\Rightarrow\hept{\begin{cases}\frac{1}{y+2}=-3\\\frac{1}{x-3}=4\end{cases}\Rightarrow\hept{\begin{cases}-3y-6=1\\4x-12=1\end{cases}}\Rightarrow\hept{\begin{cases}y=-\frac{7}{3}\\x=\frac{13}{4}\end{cases}}}\)
Vậy x = 13/4 , y = -7/3
d/ Đặt \(\frac{1}{x+y-3}=a\) ; \(\frac{1}{x-y+1}=b\) , ta có hệ phương trình:
\(\hept{\begin{cases}5a-2b=8\\3a+b=1,5\end{cases}\Rightarrow\hept{\begin{cases}5a-2\left(\frac{3}{2}-3a\right)=8\\b=\frac{3}{2}-3a\end{cases}\Rightarrow}\hept{\begin{cases}5a-3+6a=8\\b=\frac{3}{2}-3a\end{cases}\Rightarrow}\hept{\begin{cases}a=1\\b=-\frac{3}{2}\end{cases}}}\)
\(\Rightarrow\hept{\begin{cases}\frac{1}{x+y-3}=1\\\frac{1}{x-y+1}=-\frac{3}{2}\end{cases}\Rightarrow\hept{\begin{cases}x+y-3=0\\-3x+3y-3=2\end{cases}\Rightarrow}\hept{\begin{cases}x+y=3\\-3x+3y=5\end{cases}}}\)
\(\Rightarrow\hept{\begin{cases}x=3-y\\-3\left(3-y\right)+3y=5\end{cases}\Rightarrow\hept{\begin{cases}x=3-y\\-9+3y+3y=5\end{cases}\Rightarrow}\hept{\begin{cases}x=3-y\\y=\frac{7}{3}\end{cases}\Rightarrow}\hept{\begin{cases}x=\frac{2}{3}\\y=\frac{7}{3}\end{cases}}}\)
Vậy x = 2/3 ; y = 7/3
Bài 5:Dự đoán dấu = xảy ra khi a = 2; b=3;c=4. Ta có hướng giải như sau:
\(A=\left(\frac{3}{4}a+\frac{3}{a}\right)+\left(\frac{b}{2}+\frac{9}{2b}\right)+\left(\frac{1}{4}c+\frac{4}{c}\right)+\frac{a}{4}+\frac{b}{2}+\frac{3}{4}c\)
Áp dụng BĐT AM-GM,ta được:
\(A\ge2\sqrt{\frac{3}{4}a.\frac{3}{a}}+2\sqrt{\frac{b}{2}.\frac{9}{2b}}+2\sqrt{\frac{1}{4}c.\frac{4}{c}}+\frac{1}{4}\left(a+2b+3c\right)\)
\(\ge3+3+2+\frac{1}{4}.20=13\)
Dấu "=" xảy ra khi a = 2; b=3;c=4
VẬy A min = 13 khi a = 2; b=3;c=4
Bài 1: Bạn xem lại đề, với điều kiện như đã cho thì A có max chứ không có min
Bài 2:
\(A=(a+1)^2+\left(\frac{a^2}{a+1}+2\right)^2=(a+1)^2+\left(\frac{a^2+2a+2}{a+1}\right)^2\)
\(=(a+1)^2+\left(\frac{(a+1)^2+1}{a+1}\right)^2=(a+1)^2+\left(a+1+\frac{1}{a+1}\right)^2\)
\(=t^2+(t+\frac{1}{t})^2=2t^2+\frac{1}{t^2}+2\) (đặt \(t=a+1)\)
Áp dụng BĐT AM-GM:
\(2t^2+\frac{1}{t^2}\geq 2\sqrt{2}\Rightarrow A\geq 2\sqrt{2}+2\)
Vậy $A_{\min}=2\sqrt{2}+2$. Dấu "=" xảy ra khi \(a=\pm \frac{1}{\sqrt[4]{2}}-1\)
\(\frac{2y+3z+5}{1+x}+1+\frac{3z+x+5}{1+2y}+1+\frac{x+2y+5}{1+3z}+1\ge\frac{51}{7}+3=\frac{72}{7}\left(1\right)\)
Vậy ta cần chứng minh Bđt (1) , ta có:
\(VT_{\left(1\right)}=\frac{2y+3z+6+x}{1+x}+\frac{3z+x+2y+6}{1+2y}+\frac{x+2y+3z+6}{1+3z}\)
\(=\left(3z+x+2y+6\right)\left(\frac{1}{1+x}+\frac{1}{1+2y}+\frac{1}{1+3z}\right)\)
Áp dụng Bđt \(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\ge\frac{9}{x+y+z}\)ta có:
\(\left(3z+x+2y+6\right)\left(\frac{1}{1+x}+\frac{1}{1+2y}+\frac{1}{3z}\right)\)
\(\ge\left(3z+x+2y+6\right)\left(\frac{9}{3+x+2y+3z}\right)\)
\(=\left(18+6\right)\cdot\frac{9}{18+3}=24\cdot\frac{3}{7}=\frac{72}{7}\)
Vậy Bđt (1) đúng =>Đpcm
Áp dụng BĐT \(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}+\frac{1}{d}\ge\frac{\left(1+1+1+1\right)^2}{a+b+c+d}=\frac{16}{a+b+c+d}\) ta có:
\(\frac{16}{2x+3y+3z}\le\frac{1}{x+y}+\frac{1}{x+y}+\frac{1}{x+z}+\frac{1}{y+z}\)
\(\frac{16}{3x+2y+3z}\le\frac{1}{x+z}+\frac{1}{x+z}+\frac{1}{x+y}+\frac{1}{y+z}\)
\(\frac{16}{2x+3y+3z}\le\frac{1}{y+z}+\frac{1}{y+z}+\frac{1}{x+y}+\frac{1}{x+z}\)
Cộng theo vế 3 BĐT trên ta có:
\(16\left(\frac{1}{2x+3y+3z}+\frac{1}{3x+2y+3z}+\frac{1}{3x+3y+2z}\right)\)
\(\le4\left(\frac{1}{x+y}+\frac{1}{y+z}+\frac{1}{x+z}\right)=4\cdot12=48\)
\(\Rightarrow\frac{1}{2x+3y+3z}+\frac{1}{3x+2y+3z}+\frac{1}{3x+3y+2z}\le3\)
Có đk x, y > 0 mới được chớ?