Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
bài 69 Hãy tính (SGK)
1/ \(\sqrt[3]{512}=8\)
2/ \(\sqrt[3]{-729}=-9\)
3/ \(\sqrt[3]{0,064}=0,4\)
4/ \(\sqrt[3]{-0,216}=0,6\)
5/ \(\sqrt[3]{-0,008}=-0,2\)
Bài 68 Tính
1/ \(\sqrt[3]{27}-\sqrt[3]{-8}-\sqrt[3]{125}\)
=\(\sqrt[3]{3^3}-\sqrt[3]{-2^3}-\sqrt[3]{-5^3}\)
=\(3+2-5=0\)
2/ \(\frac{\sqrt[3]{135}}{\sqrt[3]{5}}-\sqrt[3]{54}.\sqrt[3]{4}\)
=\(\frac{\sqrt[3]{135}}{\sqrt[3]{5}}-\sqrt[3]{216}\)
=\(\sqrt[3]{27}-\sqrt[3]{6^3}=3-6=-3\)
Bài 69 So sánh
1/ 5 và \(\sqrt[3]{123}\)
ta có: \(5=\sqrt[3]{125}\)
\(125>123\)
Nên \(\sqrt[3]{125}>\sqrt[3]{123}\)
Vậy \(5>\sqrt[3]{123}\)
2/\(5\sqrt[3]{6}\) và \(6\sqrt[3]{5}\)
ta có: \(5\sqrt[3]{6}=\sqrt[3]{750}\)
\(6\sqrt[3]{5}=\sqrt[3]{1080}\)
=> 750 < 1080
Nên \(\sqrt[3]{750}< \sqrt[3]{1080}\)
Vậy \(5\sqrt[3]{6}< 6\sqrt[3]{5}\)
\(\hept{\begin{cases}|x-2|+2|y-1|=9\\x+|y-1|=-1\end{cases}}\)<=> \(\hept{\begin{cases}\left(x-2\right)+2\left(y-1\right)=9\\x+\left(y-1\right)=-1\end{cases}}\)
<=> \(\hept{\begin{cases}x-2+2y-2=9\\x+y-1=-1\end{cases}}\)<=>\(\hept{\begin{cases}x+2y=13\\x+y=0\end{cases}}\)<=> \(\hept{\begin{cases}x=-13\\y=13\end{cases}}\)
<=>\(\left(\sqrt{\sqrt{2}+1}-\sqrt{\sqrt{2}-1}\right)^2=\left(\sqrt{2\left(\sqrt{2}-1\right)}\right)^2\)
<=>\(\sqrt{2}+1+\sqrt{2}-1-2\left(\sqrt{\left(\sqrt{2}-1\right)\left(\sqrt{2}+1\right)}\right)=2\left(\sqrt{2}-1\right)\)
<=>\(2\sqrt{2}-2=2\sqrt{2}-2\left(dpcm\right)\)
¬¬¬¬¬¬hoc tot ¬¬¬¬¬¬¬
\(\sqrt{x-9-6\sqrt{x-9}+9}=2\)
\(\Leftrightarrow\sqrt{\left(\sqrt{x-9}-3\right)^2}=2\)
\(\sqrt{x-9}=5\Rightarrow x-9=25\Rightarrow x=34\)
Điều kiện :x>9 phương trình <=> \(x-6\sqrt{x-9}=4=>x-6\sqrt{x-9}=4=>\left(x-9\right)-6\sqrt{x-9}+9=4=>\left(\sqrt{x-9}-3\right)^2=4\)
=>\(\orbr{\begin{cases}\sqrt{x-9}-3=-2\\\sqrt{x-9}-3=2\end{cases}=>\orbr{\begin{cases}\sqrt{x-9}=1\\\sqrt{x-9=5}\end{cases}=>\orbr{\begin{cases}x=10\\x=34\end{cases}}}}\)
dung tinh chat : tanC.cotC=1=>cotC=4/3
sau đó dùng tính chất:\(1+cot^2C=\frac{1}{sin^2C}\Rightarrow sin^2C\)=0,36 =>sinC=0,6=>cosC=sinC / tanC=0,8
ta có pt
<=>\(\sqrt{\left(x+2\right)-4\sqrt{x+2}+4}+\sqrt{x+2-6\sqrt{x+2}+6}=1\)
<=>\(\sqrt{\left(\sqrt{x+2}-2\right)^2}+\sqrt{\left(\sqrt{x+2}-3\right)^2}=1\)
<=>\(\left|\sqrt{x+2}-2\right|+\left|\sqrt{x+2}-3\right|=1\)
<=>\(\left|\sqrt{x+2}-2\right|+\left|3-\sqrt{x+2}\right|=1\)
Mà \(\left|\sqrt{x+2}-2\right|+\left|3-\sqrt{x+2}\right|\ge\left|\sqrt{x+2}-2+3-\sqrt{x+2}\right|=1\)
dâu = xảy ra <=>\(\left(\sqrt{x+2}-2\right)\left(3-\sqrt{x+2}\right)\ge0\)
đến đây thì dex rồi nhé ^_^
Dấu = xảy ra khi 2 dấu căn bằng nhau vì thế x nằm trong khoảng từ 2 đến 7 dù sao bạn CX đã cố gắng mình to cho bạn
Ta có: \(5x^2-10x-4=0\)
\(\Delta^'=\left(-5\right)^2-5\cdot\left(-4\right)=45>0\)
=> PT có 2 nghiệm phân biệt
Khi đó theo hệ thức viet ta có: \(\hept{\begin{cases}x_1+x_2=2\\x_1x_2=-\frac{4}{5}\end{cases}}\)
Khi đó: \(\frac{x_1}{1+\frac{x_2}{x_1}}+\frac{x_2}{1+\frac{x_1}{x_2}}=\frac{x_1^2}{x_1+x_2}+\frac{x_2^2}{x_1+x_2}\)
\(=\frac{x_1^2+x_2^2}{x_1+x_2}=\frac{\left(x_1+x_2\right)^2-2x_1x_2}{x_1+x_2}=\frac{2^2-2\cdot\left(-\frac{4}{5}\right)}{2}=\frac{14}{5}\)