Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đề 1: TỰ LUẬN
Câu 1: sin 60o31' = cos 29o29'
cos 75o12' = sin 14o48'
cot 80o = tan 10o
tan 57o30' = cot 32o30'
sin 69o21' = cos 20o39'
cot 72o25' = 17o35'
- Chiều về mình làm cho nha nha Giờ mình đi học rồi Bạn có gấp lắm hông
Bài 1 :
\(a,2\sqrt{50}-3\sqrt{72}+\sqrt{98}=2\sqrt{2.25}-3\sqrt{2.36}+\sqrt{2.49}=10\sqrt{2}-18\sqrt{2}+7\sqrt{2}\) = \(-\sqrt{2}\)
\(b,\sqrt{\left(3-\sqrt{5}\right)^2}-\sqrt{\left(\sqrt{5}-\sqrt{7}\right)^2}+\sqrt{28}\) = \(\left|3-\sqrt{5}\right|-\left|\sqrt{5}-\sqrt{7}\right|+\sqrt{7.4}=3-\sqrt{5}-\sqrt{5}+\sqrt{7}+2\sqrt{7}=3-2\sqrt{5}+3\sqrt{7}\)
\(c,\sqrt{7-4\sqrt{3}}+\sqrt{7+4\sqrt{3}}=\sqrt{3-2.2\sqrt{3}+4}+\sqrt{3+2.2\sqrt{3}+4}=\)\(\sqrt{\left(\sqrt{3}-2\right)^2}+\sqrt{\left(\sqrt{3}+2\right)^2}=\left|-\left(2-\sqrt{3}\right)\right|+\left|\sqrt{3}+2\right|=2-\sqrt{3}+\sqrt{3}+2=4\)
Bài 1:
a: ĐKXĐ: x>0; x<>1
b: \(A=\left(\dfrac{1}{\sqrt{x}-1}+\dfrac{1}{\sqrt{x}+1}\right)\cdot\left(1+\dfrac{1}{\sqrt{x}}\right)\)
\(=\dfrac{\sqrt{x}+1+\sqrt{x}-1}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\cdot\dfrac{\sqrt{x}+1}{\sqrt{x}}=\dfrac{2}{\sqrt{x}-1}\)
c: Thay \(x=6+2\sqrt{5}\) vào A, ta được:
\(A=\dfrac{2}{\sqrt{5}+1-1}=\dfrac{2\sqrt{5}}{5}\)
d: Để |A|>A thì A>0
=>\(\sqrt{x}-1>0\)
hay x>1
5 + 3 + 2 = 151.022
9 + 2 + 4 = 183.652
8 + 6 + 3 = 482.466
5 + 4 + 5 = 202.541
7 + 2 + 5 =?
Ở đây, a + b + c = xyz
5 + 3 + 2 = (5 * 3) (5 * 2) 22 = 1510 (15 + 10-3) = 151.022
9 + 2 + 4 = (9 * 2) (9 * 4) 52 = 1836 (18 + 36-2) = 183.652
Chúng ta có thể nhận thấy rằng x = a * bởi = a * c và z = x + yb
Vì vậy, đối với những câu hỏi được đưa ra
7 2 5
a = 7, b = 2, c = 5
Vì vậy, x = a * b = 7 * 2 = 14
y = a * c = 7 * 5 = 35
z = x + y - b = 14 + 35-2 = 47
Do đó, xyz = 143.547 là câu trả lời.
Vì vậy, 7+ 2 5 = 143.547
kết quả là 143547 vì số đầu * số thứ 2 = 2 số đầu
số đầu * số thứ 3=2 số tiếp
2 số cuối = ( số đầu * số thứ 2 + số đầu * số thứ 3 - số thứ 2 )
\(pt\Leftrightarrow x^6+\left(x^3-y\right)^2=320\)
Do \(x,y\) nguyên nên ta có:
\(0\le x^6\le320\)
\(\Leftrightarrow0\le x^2\le7\Rightarrow x^2=0;1;4\)
Thử các giá trị của x vào ta tìm được
\(\left(x;y\right)=\left(2;24\right);\left(2;-8\right);\left(-2;8\right);\left(-2;-24\right)\)
Vậy có 4 cặp số nguyê \(x;y\) thỏa mãn
a, không nhìn rõ
b, \(\dfrac{a+2\sqrt{a}+1}{a-1}\)
\(=\dfrac{\left(\sqrt{a}+1\right)^2}{\left(\sqrt{a}+1\right)\left(\sqrt{a}-1\right)}=\dfrac{\sqrt{a}+1}{\sqrt{a}-1}\)
a, \(\sqrt{16\left(x-5\right)}=20\)ĐK : x > = 5
\(\Leftrightarrow4\sqrt{x-5}=20\Leftrightarrow\sqrt{x-5}=5\Leftrightarrow x-5=25\Leftrightarrow x=30\)
b, \(\sqrt{9\left(3-x\right)^2}-12=0\Leftrightarrow3\sqrt{\left(x-3\right)^2}=12\Leftrightarrow\left|x-3\right|=4\)
TH1 : \(x-3=4\Leftrightarrow x=7\)
TH2 : \(x-3=-4\Leftrightarrow x=-1\)
c, tương tự b