\(\dfrac{1}{1+\sqrt[3]{2}+\sqrt[3]{4}}\)

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

11 tháng 10 2023

\(\dfrac{1}{\sqrt[3]{4}+\sqrt[3]{2}+1}=\dfrac{\sqrt[3]{2}-1}{\left(\sqrt[3]{2}-1\right)\left(\sqrt[3]{4}+\sqrt[3]{2}+1\right)}\)

\(=\dfrac{\sqrt[3]{2}-1}{2-1}=\sqrt[3]{2}-1\)

Câu 3:

\(C=\dfrac{3\sqrt{x}-x+x+9}{9-x}:\dfrac{3\sqrt{x}+1-\sqrt{x}+3}{\sqrt{x}\left(\sqrt{x}-3\right)}\)

\(=\dfrac{-3\left(\sqrt{x}+3\right)}{x-9}\cdot\dfrac{\sqrt{x}\left(\sqrt{x}-3\right)}{2\sqrt{x}+4}\)

\(=\dfrac{-3\sqrt{x}}{2\sqrt{x}+4}\)

Để C<-1 thì C+1<0

=>-3 căn x+2 căn x+4<0

=>-căn x<-4

=>x>16

13 tháng 3 2017

DAT P = Q:R \(Q=\dfrac{\left(\sqrt{a}-1\right)\left(\sqrt{a}-2\right)}{\left(\sqrt{a}-2\right)\left(3\sqrt{a}-1\right)}-\dfrac{\sqrt{a}-3}{\left(\sqrt{a}-3\right)\left(3\sqrt{a}-1\right)}+\dfrac{8\sqrt{a}}{\left(3\sqrt{a}-1\right)\left(3\sqrt{a}+1\right)}\)

\(=\dfrac{\sqrt{a}-1}{3\sqrt{a}-1}-\dfrac{1}{3\sqrt{a}+1}+\dfrac{8\sqrt{a}}{\left(3\sqrt{a}-1\right)\left(3\sqrt{a}+1\right)}\)

\(=\dfrac{3\sqrt{a}\left(\sqrt{a}+1\right)}{\left(3\sqrt{a}-1\right)\left(3\sqrt{a}+1\right)}\)

\(R=1-\dfrac{2\sqrt{a}-a+1}{3\sqrt{a}+1}=\dfrac{a+\sqrt{a}}{3\sqrt{a}+1}=\dfrac{\sqrt{a}\left(\sqrt{a}+1\right)}{3\sqrt{a}+1}\)

\(\Rightarrow P=Q:R=\dfrac{3\sqrt{a}\left(\sqrt{a}+1\right)}{\left(3\sqrt{a}-1\right)\left(3\sqrt{a}+1\right)}\times\dfrac{3\sqrt{a}+1}{\sqrt{a}\left(\sqrt{a}+1\right)}\)

\(P=\dfrac{3}{3\sqrt{a}-1}\)

\(P>\dfrac{3}{\left|1-3\sqrt{5}\right|}\Leftrightarrow\dfrac{3}{3\sqrt{a}-1}>\dfrac{3}{3\sqrt{5-1}}\)

\(3\sqrt{a}-1< 3\sqrt{5}-1\)

\(\Rightarrow0\le\sqrt{a}\le\sqrt{5}\)

\(a=\) 0 ;1 ;2 ;3 ;4

​a lớn nhất \(\Rightarrow a\) = 4

13 tháng 3 2017

Bạn rút gọn được P chưa ?~!

12 tháng 11 2017

a) \(\sqrt{4x+8}-\sqrt{9x+18}+\sqrt{x+2}=\sqrt{x+5}\)

\(\Leftrightarrow\sqrt{4\left(x+2\right)}-\sqrt{9\left(x+2\right)}+\sqrt{x+2}=\sqrt{x+5}\)

\(\Leftrightarrow2\sqrt{x+2}-3\sqrt{x+2}+\sqrt{x+2}=\sqrt{x+5}\)

\(\Leftrightarrow0\sqrt{x+2}=\sqrt{x+5}\Leftrightarrow0=\sqrt{x+5}\)

\(\Leftrightarrow0=x+5\Leftrightarrow-5=x\)

Vậy phương trình đã cho có nghiệm duy nhất là x = -5

b) ĐKXĐ: \(x\ge0;x\ne1\)

\(T=\left(\dfrac{1}{1+2\sqrt{x}}-\dfrac{1}{\sqrt{3}+2}\right):\dfrac{1-\sqrt{x}}{x+4\sqrt{x}+4}\)

\(=\left(\dfrac{\sqrt{3}+2-1-2\sqrt{x}}{\left(1+2\sqrt{x}\right)\left(\sqrt{3}+2\right)}\right):\left(\dfrac{1-\sqrt{x}}{\left(\sqrt{x}+2\right)^2}\right)\)

\(=\dfrac{1-2\sqrt{x}+\sqrt{3}}{\left(1+2\sqrt{x}\right)\left(\sqrt{3}+2\right)}.\dfrac{\left(\sqrt{x}+2\right)^2}{1-\sqrt{x}}\)

12 tháng 11 2017

a) Bổ sung: ĐKXĐ: \(\left\{{}\begin{matrix}\sqrt{x+2}XĐ\Leftrightarrow x+2\ge0\\\sqrt{x+5}XĐ\Leftrightarrow x+5\ge0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x\ge-2\\x\ge-5\end{matrix}\right.\Rightarrow}x\ge-2}\) Sau khi tìm được x = -5 ta thấy k thỏa mãn Đk: \(x\ge-2\)

Vậy pt đã cho là vô nghiệm

1 tháng 8 2018

Bài 1:

a. ta có \(\dfrac{x\sqrt{x}+y\sqrt{y}}{\sqrt{x}+\sqrt{y}}-\left(\sqrt{x}-\sqrt{y}\right)^2\)

= \(\dfrac{\left(\sqrt{x}+\sqrt{y}\right)\left(x-\sqrt{xy}+y\right)}{\sqrt{x}+\sqrt{y}}-x+2\sqrt{xy}-y\)

= \(x-\sqrt{xy}+y-x+2\sqrt{xy}-y\)

=\(\sqrt{xy}\)

b.ĐK: x ≠ 1

Ta có: A= \(\sqrt{\dfrac{x+2\sqrt{x}+1}{x-2\sqrt{x}+1}}\)=\(\sqrt{\dfrac{\left(\sqrt{x}+1\right)^2}{\left(\sqrt{x}-1\right)^2}}\)=\(\dfrac{\sqrt{x}+1}{\left|\sqrt{x}-1\right|}\)

*Nếu \(\sqrt{x}-1\ge0\Rightarrow\sqrt{x}\ge1\)

⇒ A = \(\dfrac{\sqrt{x}+1}{\sqrt{x}-1}\)

*Nếu \(\sqrt{x}-1< 0\Rightarrow\sqrt{x}< 1\)

⇒ A=\(\dfrac{\sqrt{x}+1}{-\sqrt{x}+1}\)

c.Ta có:

Cau 1: 

a: \(A=\dfrac{\left(\sqrt{a}-2\right)\left(a+2\sqrt{a}+4\right)+2\sqrt{a}\left(\sqrt{a}-2\right)}{a-4}\)

\(=\dfrac{\left(\sqrt{a}-2\right)\left(a+4\sqrt{a}+4\right)}{a-4}=\dfrac{\left(\sqrt{a}+2\right)^2}{\sqrt{a}+2}=\sqrt{a}+2\)

c: \(=\dfrac{\left|c+1\right|}{\left|c\right|-1}\)

TH1: c>0

\(C=\dfrac{c+1}{c-1}\)

TH2: c<0

\(C=\dfrac{\left|c+1\right|}{-\left(c+1\right)}=\pm1\)

AH
Akai Haruma
Giáo viên
8 tháng 7 2018

Lời giải:

a) Ta thấy: \(a+b-2\sqrt{ab}=(\sqrt{a}-\sqrt{b})^2\geq 0, \forall a,b>0\)

\(\Rightarrow a+b\geq 2\sqrt{ab}>0\Rightarrow \frac{1}{a+b}\le \frac{1}{2\sqrt{ab}}\).

Vì $a> b$ nên dấu bằng không xảy ra . Tức \(\frac{1}{a+b}< \frac{1}{2\sqrt{ab}}\)

Ta có đpcm

b)

Áp dụng kết quả phần a:

\(\frac{1}{3}=\frac{1}{1+2}< \frac{1}{2\sqrt{2.1}}\)

\(\frac{1}{5}=\frac{1}{3+2}< \frac{1}{2\sqrt{2.3}}\)

\(\frac{1}{7}=\frac{1}{4+3}< \frac{1}{2\sqrt{4.3}}\)

.....

\(\frac{1}{4021}=\frac{1}{2011+2010}< \frac{1}{2\sqrt{2011.2010}}\)

Do đó:

\(\frac{\sqrt{2}-\sqrt{1}}{3}+\frac{\sqrt{3}-\sqrt{2}}{5}+...+\frac{\sqrt{2011}-\sqrt{2010}}{4021}\)

\(< \frac{\sqrt{2}-\sqrt{1}}{2\sqrt{2.1}}+\frac{\sqrt{3}-\sqrt{2}}{2\sqrt{3.2}}+\frac{\sqrt{4}-\sqrt{3}}{2\sqrt{4.3}}+....+\frac{\sqrt{2011}-\sqrt{2010}}{2\sqrt{2011.2010}}\)

\(=\frac{1}{2}-\frac{1}{2\sqrt{2}}+\frac{1}{2\sqrt{2}}-\frac{1}{2\sqrt{3}}+...+\frac{1}{2\sqrt{2010}}-\frac{1}{2\sqrt{2011}}\)

\(=\frac{1}{2}-\frac{1}{2\sqrt{2011}}< \frac{1}{2}\) (đpcm)