K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

13 tháng 11 2018

Đề bài

Cho hình thang ABCD (AB, CD là hai đáy). Gọi M, N, P, Q lần lượt là trung điểmcủa AB, AC, CD, BD.

a) M, N lần lượt là trung điểm của AB và BC (gt);

⇒MN⇒MN là đường trung bình của tam giác ABC

⇒MN//AC⇒MN//AC và .. 

Q, P lần lượt là trung điểm của AD và CD (gt);

⇒QP⇒QP là đường trung bình của tam giác ADC

⇒QP//AC⇒QP//AC và QP=12AC(2)QP=12AC(2)

Từ (1) và (2) ⇒MN//QP⇒MN//QP và MN=QPMN=QP

Vậy tư giác MNPQ là hình bình hành.

b) Ta có tứ giác MNPQ là hình bình hành.

MN // AC, MN=AC2MN=AC2 (MN là đường trung bình của tam giác ABC)

MQ // BD, MQ=BD2MQ=BD2 (MQ là đường trung bình của tam giác ABD)

* Tứ giác MNPQ là hình thoi ⇔⇔ Hình bình hành MNPQ có MN=MQ⇔AC=BDMN=MQ⇔AC=BD

Vậy hình thanh ABCD cần có thêm điều kiện AC=BDAC=BD để tứ giác MNPQ là hình thoi.

* Tứ giác MNPQ là hình chữ nhật ⇔⇔ Hình bình hành MNPQ có ˆNMQ=900NMQ^=900

⇒MN⊥MQ⇔MQ⊥AC⇔AC⊥BD⇒MN⊥MQ⇔MQ⊥AC⇔AC⊥BD

Vậy hình thang ABCD cần có thêm điều kiện AC⊥BDAC⊥BD để tứ giác MNPQ là hình chữ nhật.

* Tứ giác MNPQ là hình vuông ⇔⇔ Hình thoi MNPQ có ˆNMQ=900⇔AC=BDNMQ^=900⇔AC=BD và AC⊥BDAC⊥BD

Vậy hình thang ABCD cần thêm điều kiện AC=BD,AC⊥BDAC=BD,AC⊥BD để tứ giác MNPQ là hình vuông.



Xem thêm tại: https://loigiaihay.com/bai-tap-2-trang-140-tai-lieu-day-hoc-toan-8-tap-1-c242a43131.html#ixzz5Y0XJF4SV

13 tháng 11 2018

đây là bài làm mik tham khảo thôi nha

26 tháng 5 2020

2, \(\widehat{ABC} + \widehat{BCA} = \widehat{BAC} = 90^0 ⇒ \widehat{BCA} = 90^0 - \widehat{ABC}\)

\(\widehat{ABC} +\widehat{ BAH} = \widehat{BAC} =90^0⇒\widehat{BAH} = 90^0 - \widehat{ABC}\)

\(\widehat{BCA} = \widehat{BAH}\)

XÉT \(\bigtriangleup\)HBA và\(\bigtriangleup\) HAC có :

\(\widehat{BHA}=\widehat{BAC}=90^0\)

\(\widehat{BCA}=\widehat{BAH}\)

\(\bigtriangleup\)HBA ∼ \(\bigtriangleup\) HAC

b, Áp dụng hệ thức \(b^2=a.b'\) vào \(\bigtriangleup{ABC}\) vuông tại A , ta có :

\(AC^2=BC.CH\) (đpcm)

c, Áp dụng hệ thức \(h^2=b'.c'\) vào \(\bigtriangleup{ABC}\) vuông tại A, ta có :

\(AH^2=BH.CH\) (đpcm)

2 tháng 9 2019

\(\left(\frac{1}{2}xy-1\right).\left(x^3-2x-6\right)=\frac{1}{2}xy.\left(x^3-2x-6\right)+\left(-1\right).\left(x^3-2x-6\right)\)

\(\frac{1}{2}xy.x^3+\frac{1}{2}xy.\left(-2x\right)+\frac{1}{2xy}.\left(-6\right)+\left(-1\right).x^3+\left(-1\right).\left(-2x\right)+\left(-1\right).\left(-6\right)\)

\(\frac{1}{2}x^{\left(1+3\right)}y-x^{\left(1+1\right)}y-3xy-x^3+2x+6\)

\(\frac{1}{2}x^4y-x^2y-3xy-x^3+2x+6\)

\(\frac{1}{2}x^4y-x^3-x^2y-3xy+2x+6\)

Chúc bạn học tốt !!!

Bài làm

Ta có: ( xy - 1 )( x3 - 2x - 6 )

= ( xy . x3 ) + [ xy . ( -2x ) ] + [ xy . ( - 6 ) ] + [ ( -1 ) . x3 ] + [ ( -1 ) . ( -2x ) ] + [ ( -1 ) . ( -6 ) ]  ( * chỗ này nếu thầnh thạo phép nnhân đa thức r thì k cần pk ghi đâu )

= x4y - 2x2y - 6xy - x3 + 2x + 6

# Học tốt #

21 tháng 9 2018

chứng tỏ cái gì

21 tháng 9 2018

Dùng định nghĩa hai phân thức bằng nhau chứng tỏ rằng: 

- Chứng Tỏ Rằng J Hả Bạn ??????

17 tháng 4 2020

Mục tiêu -500 sp mong giúp đỡ