Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có: B=\(\frac{17^{2009}+1}{17^{2010}+1}\)<1 ( Vì 172009+1< 172010+1 )
Nên B=\(\frac{17^{2009}+1}{17^{2010}+1}\)<\(\frac{17^{2009}+1+16}{17^{2010}+1+16}\)
=\(\frac{17^{2009}+17}{17^{2010}+17}\)
=\(\frac{17\left(17^{2008}+1\right)}{17\left(17^{2009}+1\right)}\)
=\(\frac{17^{2008+1}}{17^{2009}+1}\)=A
Vậy A>B
Để A là phân số tối giản thì UCLN(2n+7, 5n+2)=1
Đặt UCLN(2n+7, 5n+2)=d
=>2n+7\(⋮d\)=>5(2n+7)=>10n+35 \(⋮d\)
5n+2\(⋮d\)=>2(5n+2)=>10n+4 \(⋮d\)
Vì 10n+35 \(⋮d\), 10n+4\(⋮d\)=>(10n+35)-(10n+4)
=(10n-10n)+(35-4)=35-4=31 \(⋮d\)=>\(d\in\left\{1;31\right\}\)
Để 2n+7/5n+2 là phân số tối giản thì UCLN(2n+7, 5n+2)=1
Để 2n+7 và 5n+2 không cùng chia hết cho 31 thì n\(\ne12,43,74,105,...\)(mỗi số có khoảng cách với nhau là 31 đơn vị)
Vậy để A là phân số tối giản thì \(n\inℕ,n\ne12,43,74,105,136,...\)
Gọi số tự nhiên cần tìm là A
Chia cho 29 dư 5 nghĩa là: A = 29p + 5 ( p ∈ N )
Tương tự: A = 31q + 28 ( q ∈ N )
Nên: 29p + 5 = 31q + 28=> 29(p - q) = 2q + 23
Ta thấy: 2q + 23 là số lẻ => 29(p – q) cũng là số lẻ ==>p – q >=1
Theo giả thiết A nhỏ nhất => q nhỏ nhất (A = 31q + 28)
=>2q = 29(p – q) – 23 nhỏ nhất
=> p – q nhỏ nhất
Do đó p – q = 1 => 2q = 29 – 23 = 6
=> q = 3
Vậy số cần tìm là: A = 31q + 28 = 31. 3 + 28 = 121
a)
x-3 | 1 | -1 | 7 | -7 |
2y +1 | 7 | -7 | 1 | -1 |
x | 4 | 2 | 10 | -4 |
y | 3 | -4 | 0 | -1 |
b)
2x +1 | 1 | -1 | 5 | -5 | 11 | -11 | 55 | -55 |
3y-2 | -55 | 55 | -11 | 11 | -5 | 5 | -1 | 1 |
x | 0 | -1 | 2 | -3 | 5 | -6 | 27 | -28 |
y | / | 19 | -3 | / | -1 | / | / | 1 |
Có 4 đáp số :(x =-1; y =19) ; (x =2 ; y =-3)
(x =5 ; y =-1) ; (x =-28 ; y =1)
a,(x-3)(2y+1)=7
Ta co: 7=1.7=7.1=(-1).(-7)=(-7).(-1)
\(\Rightarrow\)(x-3)(2y+1)=1.7 hay (x-3)(2y+1)=7.1 hay (x-3)(2y+1)=(-1).(-7) hay (x-3)(2y+1)=(-7).(-1)
TH1: \(\text{(x-3)(2y+1)=}1.7\Rightarrow\orbr{\begin{cases}\left(x-3\right)=1\\\left(2y+1\right)=7\end{cases}\Rightarrow\orbr{\begin{cases}x=4\\y=3\end{cases}}\left(TM\right)}\)
TH2: \(\text{(x-3)(2y+1)=7.1}\Rightarrow\orbr{\begin{cases}\text{(x-3)=7}\\\text{ }\text{(2y+1)=1}\end{cases}\Rightarrow\orbr{\begin{cases}x=10\\y=0\end{cases}}\left(TM\right)}\)
TH3:\(\text{(x-3)(2y+1)=(-1).(-7)}\Rightarrow\orbr{\begin{cases}\text{(x-3)=-1}\\\text{(2y+1)=-7}\end{cases}\Rightarrow\orbr{\begin{cases}x=4\\y=-8\end{cases}\left(TM\right)}}\)
TH4: \(\text{(x-3)(2y+1)=(-7).(-1)}\Rightarrow\orbr{\begin{cases}\text{(x-3)=-7}\\\text{(2y+1)=-1}\end{cases}\Rightarrow\orbr{\begin{cases}x=-4\\y=-1\end{cases}\left(TM\right)}}\)
Vay (x,y)={(4,3);(10,0);(4,-8);(-4;-1)}
b, (2x+1)(3y-2)=-55
Ta co: -55=-1.55=1.(-55)=55.(-1)=-55.1=-11.5=11.(-5)=5.(-11)=-5.11
\(\Rightarrow\)(2x+1)(3y-2)=-1.55 hay (2x+1)(3y-2)=1.(-55) hay (2x+1)(3y-2)=55.(-1) hay (2x+1)(3y-2)=-55.1 hay (2x+1)(3y-2)=-11.5
hay (2x+1)(3y-2)=11.(-5) hay (2x+1)(3y-2)=5.(-11) hay (2x+1)(3y-2)=-5.11
TH1:\(\text{(2x+1)(3y-2)=-1.55}\Rightarrow\orbr{\begin{cases}\text{(2x+1)=-1}\\\text{(3y-2)=55}\end{cases}\Rightarrow\orbr{\begin{cases}x=-1\\y=19\end{cases}\left(TM\right)}}\)
TH2:\(\text{(2x+1)(3y-2)=1.(-55)}\Rightarrow\orbr{\begin{cases}\text{(2x+1)=1}\\\text{(3y-2)=-55}\end{cases}\Rightarrow\orbr{\begin{cases}x=0\\y=\frac{-53}{3}\end{cases}\Rightarrow}\left(loai\right)}\)
TH3:\(\text{(2x+1)(3y-2)=55.(-1)}\Rightarrow\orbr{\begin{cases}\text{(2x+1)=55}\\\text{(3y-2)=-1}\end{cases}\Rightarrow\orbr{\begin{cases}x=27\\y=\frac{1}{3}\end{cases}\left(loai\right)}}\)
TH4: \(\text{(2x+1)(3y-2)=-55.1}\Rightarrow\orbr{\begin{cases}\text{(2x+1)=-55}\\\text{(3y-2)=1}\end{cases}\Rightarrow\orbr{\begin{cases}x=-28\\y=1\end{cases}\left(TM\right)}}\)
TH5: \(\text{(2x+1)(3y-2)=-11.5}\Rightarrow\orbr{\begin{cases}\text{(2x+1)=-11}\\\text{(3y-2)=5}\end{cases}\Rightarrow\orbr{\begin{cases}x=-6\\y=\frac{7}{3}\end{cases}\left(loai\right)}}\)
TH6: \(\text{(2x+1)(3y-2)=11.(-5)}\Rightarrow\orbr{\begin{cases}\text{(2x+1)=11}\\\text{(3y-2)=-5}\end{cases}\Rightarrow\orbr{\begin{cases}x=5\\y=-1\end{cases}\left(TM\right)}}\)
TH7:\(\text{(2x+1)(3y-2)=5.(-11)}\Rightarrow\orbr{\begin{cases}\text{(2x+1)=5}\\\text{(3y-2)=-11}\end{cases}\Rightarrow\orbr{\begin{cases}x=4\\y=-3\end{cases}\left(TM\right)}}\)
TH8:\(\text{(2x+1)(3y-2)=-5.11}\Rightarrow\orbr{\begin{cases}\text{(2x+1)=-5}\\\text{(3y-2)=11}\end{cases}\Rightarrow\orbr{\begin{cases}x=-3\\y=\frac{13}{3}\end{cases}\left(loai\right)}}\)
răng hàm 3/8
RĂNG cối nhỏ 1/4
răng nanh 1/8
răng cửa 1/4
k nha
\(\frac{8}{32}\) răng cửa= \(\frac{1}{4}\)tổng số răng
\(\frac{4}{32}\)răng nanh= \(\frac{1}{8}\)tổng số răng
\(\frac{8}{32}\)răng cối = \(\frac{1}{4}\)tổng số răng
\(\frac{12}{32}\)răng hàm= \(\frac{3}{8}\)tổng số răng
Nhớ k mk nha!!!
â) Ta có : \(2n-1⋮n+1\Leftrightarrow2n+2-2-1⋮n+1\)
\(\Leftrightarrow2\left(n+1\right)-2-1⋮n+1\)\(\Leftrightarrow2\left(n+1\right)-3⋮n+1\)
\(\Leftrightarrow2n-1⋮n+1\)khi \(3⋮n+1\Rightarrow n+1\in\)Ước của \(3\) \
\(\Leftrightarrow n+1\in\left(1;-1;3;-3\right)\)
\(\Leftrightarrow n\in\left(0;-2;2;-4\right)\)
Vậy \(n\in\left(-4;-2;0;2\right)\)
b) Ta có :\(9n+5⋮3n-2\Rightarrow3\left(3n-2\right)+6+5⋮3n-2\)
\(\Rightarrow3\left(3n-2\right)+11⋮3n-2\)
\(\Rightarrow9n+5⋮3n-2\)Khi \(11⋮3n-2\)
\(\Rightarrow3n-2\in U\left(11\right)\)
\(\Rightarrow3n-2\in\left(-11;-1;1;11\right)\)
\(\Rightarrow n\in\left(-3;1;\right)\)
Phần c) bạn tự làm nhé!
a)\(x.3^{15}=3^{17}\)
\(x=3^{17}:3^{15}\)
\(x=3^2=9\)
b) \(5^x=6^x\Leftrightarrow x=1;x=0\)
c) \(x^3=x^6\)
\(x^3=x^3.x^3\) \(x^3=1\) \(x=1\) | \(x^3=\left(x^3\right)^2\) \(x=0\) |
B2 ss
a)\(3^{45}=\left(3^3\right)^{15}=27^{15}\)
\(4^{30}=\left(4^2\right)^{15}=16^{15}\)
vì 1615 < 2715 nên 430 < 345
b)
\(818.820=\left(819-1\right)\left(819+1\right)=819^2-1\)
vì 8192 > 8192 - 1 nên 8192 > 818.820
Ta có:
\(33^{17}>33^{16}\) (1)
\(33^{16}=\left(33^4\right)^4=1185921^4\)
\(7^{28}=\left(7^7\right)^4=823543^4\)
Do \(1185921>823543\Rightarrow1185921^4>823543^4\)
\(\Rightarrow33^{16}>7^{28}\) (2)
Từ (1) và (2) \(\Rightarrow33^{17}>7^{28}\)