Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài1,
x là quãng đường AB(x>0,km)
khi đó thời gian người đó đi làx/40
và thời gian về của người đó là x/24
đổi 5h30phút =11/2h
theo bài ra ta có phương trình
x/30+x/24=11/2
MTC:120
Giải phương trìnhta được
x\(\approx\)73,33(TMĐK)
Vậy quãng đường AB dài 73,33km
2)1h30'=1,5h
gọi vận tốc xe đạp là x(km/h) (x>0)
vận tốc ô tô là 3x (km/h)
thời gian xe đạp đi từ A đến B là 24/x (h)
thời gian ô tô đi từ A đến B là 24/3x
vì ô tô đến trước xe đạp 1,5 h nên ta có phương trình
\(\dfrac{24}{3x}+1,5=\dfrac{24}{x}\\ \Leftrightarrow\dfrac{24}{3x}+1,5-\dfrac{24}{x}=0\\\Leftrightarrow\dfrac{24+1,5\cdot3x-24\cdot3}{3x} =0\\ \Leftrightarrow24+4,5x-72=0\\ \Leftrightarrow4,5x=72-24\Leftrightarrow4,5x=48\\ \Leftrightarrow x=\dfrac{48}{4,5}\approx10,7\left(\dfrac{km}{h}\right)\)
Vậy vận tốc của xe đạp là 10,7 (km/h)
Bài 1 :
Gọi tử số là x => Mẫu số là x - 8
Nếu thêm tử hai đơn vị thì tử mới là : \(x+2\)
Nếu bớt mẫu 3 đơn vị thì mẫu mới là : \(x-11\)
Mà phân số mới là \(\dfrac{3}{4}.\)
Theo đề bài , ta có phương trình :
\(\dfrac{x+2}{x-11}=\dfrac{3}{4}\)
\(\Leftrightarrow4\left(x+2\right)=3\left(x-11\right)\)
\(\Leftrightarrow4x+8=3x-33\)
\(\Leftrightarrow x=-41\)
Vậy tử là -41
mẫu là -49
Bài 3 : \(\dfrac{x-1}{4}+1\ge\dfrac{x+1}{3}\)
\(\Leftrightarrow\dfrac{3\left(x-1\right)}{12}+\dfrac{12}{12}\ge\dfrac{4\left(x+1\right)}{12}\)
\(\Leftrightarrow3x-3+12\ge4x+4\)
\(\Leftrightarrow-x\ge-5\)
\(\Leftrightarrow x\le5\)
Vậy...............
a)tam giác BHA có BI là phân giác(góc ABI=góc HBI) nên \(\dfrac{AI}{IH}=\dfrac{AB}{BH}\Rightarrow AI\cdot BH=AB\cdot IH\)
b)xét tam giác BHA và tam giác BAC có:
góc ABC chung
góc BHA=góc BAC=90 độ
\(\Rightarrow\Delta BHA\infty\Delta BAC\left(g.g\right)\\ \Rightarrow\dfrac{BH}{AB}=\dfrac{AB}{BC}\Rightarrow AB^2=BH\cdot BC\)
c)ta có:
theo câu a) \(\dfrac{AI}{IH}=\dfrac{AB}{BH}\Rightarrow\dfrac{IH}{AI}=\dfrac{BH}{AB}\left(1\right)\)
theo câu b) \(\dfrac{BH}{AB}=\dfrac{AB}{BC}\)
ta lại có BD là phân giác góc ABC nên \(\dfrac{AB}{BC}=\dfrac{AD}{DC}\Rightarrow\dfrac{AD}{DC}=\dfrac{BH}{AB}\)(2)
từ (1) và (2)\(\Rightarrow\dfrac{IH}{IA}=\dfrac{AD}{DC}\left(=\dfrac{BH}{AB}\right)\)
Áp dụng HĐT bình phương của 1 tổng ta có:\(x^2+2xy+y^2=x^2+y^2+2xy=1+2xy\)Ta có: \(\left(x-y\right)^2\ge0\Leftrightarrow x^2-2xy+y^2\ge0\) (HĐT bình phương của 1 hiệu)
\(\Rightarrow2xy\le x^2+y^2\) hay \(2xy\le1\)
\(\Rightarrow\left(x+y\right)^2=1+2xy\le1+1=2\)
\(\Rightarrow MAX_{\left(x+y\right)^2}=2\)
Áp dụng BĐT BCS, ta có:
\(\left(x^2+y^2\right)\left(1+1\right)\ge\left(x+y\right)^2\)
\(2\ge\left(x+y\right)^2\)
\(\left(x+y\right)^2\le2\)
Vậy: \(Max_{\left(x+y\right)^2}=2\) khi \(x^2+y^2=1\)
(4x - 5)2 + (4x - 5)(x2 - x - 2) + (x2 - x - 2)2 = (x2 + 3x - 7)2
<=> (4x - 5)2 + 2(4x - 5)(x2 - x - 2) + (x2 - x - 2)2 - (x2 + 3x - 7)2 = (4x - 5)(x2 - x - 2)
<=> (4x - 5 + x2 - x - 2)2 - (x2 + 3x - 7)2 = (4x - 5)(x2 - x + 2x - 2)
<=> (x2 + 3x - 7)2 - (x2 + 3x - 7) = (4x - 5)[x(x - 1) + 2(x - 1)]
<=> (4x - 5)(x - 1)(x + 2) = 0
<=> \(\left[{}\begin{matrix}4x-5=0\\x-1=0\\x+2=0\end{matrix}\right.\)
<=> \(\left[{}\begin{matrix}x=\dfrac{5}{4}\\x=1\\x=-2\end{matrix}\right.\)
Vậy S = {- 2 ; 1 ; 1,25}
ĐS: 1,25
\(\left\{{}\begin{matrix}a=4x-5\\b=x^2-x-2\\a+b=x^2+3x-7\end{matrix}\right.\) nên bổ xungchức căn lề phải cho cái này!
\(\Leftrightarrow a^2+ab+b^2=\left(a+b\right)^2\)
\(\Leftrightarrow ab=2ab\Rightarrow\left[{}\begin{matrix}a=0\\b=0\end{matrix}\right.\)\(\left[{}\begin{matrix}x=\dfrac{5}{4}\\\left[{}\begin{matrix}x=-1\\x=2\end{matrix}\right.\end{matrix}\right.\)
= ((x-y)\(^2\))\(^7\) = (x-y)\(^{14}\)
cho x=y =1 \(\Rightarrow\)(1-1)\(^{14}\)=0
vậy tổng các hệ số =0