Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(x^2\) - \(x\) - 121
= (\(x^2\) - \(2.x.\frac{1}{2}\) + \(\frac{1}{4}\) ) - \(\frac{1}{4}\) - 121
= (\(x\) - \(\frac{1}{2}\) )2 - \(\frac{485}{4}\)
= (\(x\) - \(\frac{1}{2}\) - \(\frac{\sqrt{485}}{2}\) ) (\(x\) - \(\frac{1}{2}\) + \(\frac{\sqrt{485}}{2}\) )
= (\(x\) - \(\frac{1+\sqrt{485}}{2}\) ) (\(x\) - \(\frac{1-\sqrt{485}}{2}\) )
\(x^2-x-121\)
\(=\left(x^2-2.x.\frac{1}{2}+\frac{1}{4}\right)-\frac{1}{4}-121\)
\(=\left(x-\frac{1}{2}\right)^2-\frac{485}{4}\)
\(=\left(x-\frac{1}{2}-\frac{\sqrt{485}}{2}\right)\left(x-\frac{1}{2}+\frac{\sqrt{485}}{2}\right)\)
\(=\left(x-\frac{1+\sqrt{485}}{2}\right)\left(x-\frac{1-\sqrt{485}}{2}\right)\)
câu a:
\(=x^2+6x-x+6\)
\(=\left(x^2-x\right)-\left(6x-6\right)\)
\(=x\left(x-1\right)-6\left(x-1\right)\)
\(=\left(x-6\right)\left(x-1\right)\)
câu b:
\(=x^2+5x-x-5\)
\(=x^2-x+5x-5\)
\(=x\left(x-1\right)+5\left(x-1\right)\)
\(=\left(x+5\right)\left(x-1\right)\)
a, x2 + 5x +6
= x2 - 6x-x +6
= x(x-6)-(x-6)
=( x-1)(x-6)
b, x2+4x-5
= x2+ 5x -x -5
= x(x+5)-(x+5)
=(x-1)(x+5)
\(\left(x+y+z\right)^3-x^3-y^3-z^3.\)
\(=x^3+y^3+z^3+3\left(x+y\right)\left(x+z\right)\left(y+z\right)-x^3-y^3-z^3\)
\(=3\left(x+y\right)\left(x+z\right)\left(y+z\right)\)
~ Chúc bạn học tốt~
A/ \(2x^2+7x+5=2\left(x^2+2x+1\right)+3x+3=2\left(x+1\right)^2+3\left(x+1\right)\)
\(=\left(x+1\right)\left(2x+5\right)\)
B/ \(x^2-4x-5=\left(x^2-4x+4\right)-9=\left(x-2\right)^2-3^2=\left(x-5\right)\left(x+1\right)\)
C/ \(x^4+x^3+x+1=x^3\left(x+1\right)+\left(x+1\right)=\left(x+1\right)\left(x^3+1\right)=\left(x+1\right)^2\left(x^2-x+1\right)\)
D/\(x^4+4x^2-5=\left(x^4+4x^2+4\right)-9=\left(x^2+2\right)^2-3^2=\left(x^2-1\right)\left(x^2+5\right)=\left(x-1\right)\left(x+1\right)\left(x^2+5\right)\)
a) = 2x^2 + 2x +5x + 5 = 2x(x+1) + 5(x+1) = (2x+5)(x+1)
b) = x^2 + x - 5x - 5 = x(x-1) - 5(x-1) = (x-5)(x-1)
c) = x^3 ( x+1) + x+1 = (x^3+1) (x+1) = (x+1)^2 * (x^2 - x +1)
d) = x^4 - x^2 + 5x^2 -5 = x^2 (x^2-1) + 5(x^2-1) = (x^2+5)(x-1)(x+1)
\(3x^2-3y^2-2\left(x-y\right)^2\)
\(=3x^2-3y^2-2\left(x^2-2xy+y^2\right)\)
\(=3x^2-3y^2-2x^2+4xy-2y^2\)
\(=x^2+4xy-5y^2\)
\(=x^2+4xy+4y^2-9y^2\)
\(=\left(x+2y\right)^2-\left(3y\right)^2\)
\(=\left(x+2y-3y\right)\left(x+2y+3y\right)\)
\(=\left(x-y\right)\left(x+5y\right)\)
A/ \(16x-5x^2-3=\left(15x-3\right)-\left(5x^2-x\right)=3\left(5x-1\right)-x\left(5x-1\right)=\left(5x-1\right)\left(3-x\right)\)
B/ \(x^3-3x^2+1-3x=\left(x^3-4x^2+x\right)+\left(x^2-4x+1\right)=x\left(x^2-4x+1\right)+\left(x^2-4x+1\right)\)
\(=\left(x+1\right)\left(x^2-4x+1\right)\)
C/ \(x^3-3x^2-4x+12=x^2\left(x-3\right)-4\left(x-3\right)=\left(x-3\right)\left(x-2\right)\left(x+2\right)\)
D/ \(\left(2x+1\right)^2-\left(x-1\right)^2=\left(2x+1-x+1\right)\left(2x+1+x-1\right)=3x\left(x+2\right)\)
\(x^3-x^2-21x+45\)
\(=\left(x^3-3x^2\right)+\left(2x^2-6x\right)+\left(-15x+45\right)\)
\(=x^2\left(x-3\right)+2x\left(x-3\right)-15\left(x-3\right)\)
\(=\left(x^2+2x-15\right)\left(x-3\right)\)
\(=\left[\left(x^2-3x\right)+\left(5x-15\right)\right]\left(x-3\right)\)
\(=\left[x\left(x-3\right)+5\left(x-3\right)\right]\left(x-3\right)\)
\(=\left(x+5\right)\left(x-3\right)^2\)