\(\sqrt{22-8\sqrt{6}}\)

b) 

K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

16 tháng 6 2021

\(a,\sqrt{22-8\sqrt{6}}\)

\(\sqrt{4^2-8\sqrt{6}+\sqrt{6}^2}\)

\(\sqrt{\left(4-\sqrt{6}\right)^2}=\left|4-\sqrt{6}\right|\)

\(4>\sqrt{6}< =>\left|4-\sqrt{6}\right|=4-\sqrt{6}\)

\(b,\sqrt{16-6\sqrt{7}}\)

\(\sqrt{3^2-6\sqrt{7}+\sqrt{7}^2}\)

\(\sqrt{\left(3-\sqrt{7}\right)^2}\)

\(\left|3-\sqrt{7}\right|\)

\(=3-\sqrt{7}\)

\(c,\sqrt{9-4\sqrt{2}}\)

\(\sqrt{9-2.2\sqrt{2}}\)

\(\sqrt{\left(2\sqrt{2}\right)^2-2.2\sqrt{2}+1}\)

\(\sqrt{\left(2\sqrt{2}-1\right)^2}\)

\(2\sqrt{2}>1\)

\(\left|2\sqrt{2}-1\right|=2\sqrt{2}-1\)

4 tháng 10 2016

k đi mình làm cho

6 tháng 7 2017

Tam thoi mk moi giai dc cau 3,4. Bh ban con can ko

14 tháng 6 2018

Các câu sau bạn tự làm đi mCăn thức bậc hai và hằng đẳng thức căn bậc hai của bình phương

7 tháng 7 2018

a, \(\sqrt{8+2\sqrt{15}}=\left(\sqrt{5}\right)^2-2\sqrt{3}.\sqrt{5}-\left(\sqrt{3}\right)^2\)

\(=\sqrt{\left(\sqrt{5}-\sqrt{3}\right)^2}\)

\(=\sqrt{5}-\sqrt{3}\)

b,

NV
7 tháng 4 2019

a/ \(A=\frac{30\left(\sqrt{6}-1\right)}{5}+\frac{2\left(\sqrt{6}+2\right)}{2}-\frac{6\left(3+\sqrt{6}\right)}{3}=6\sqrt{6}-6+\sqrt{6}+2-6-2\sqrt{6}\)

\(A=5\sqrt{6}-10\)

\(B=\sqrt{17-6\sqrt{2}+\sqrt{8+4\sqrt{2}+1}}\)

\(B=\sqrt{17-6\sqrt{2}+\sqrt{\left(2\sqrt{2}+1\right)^2}}=\sqrt{18-4\sqrt{2}}\)

Đến đây ko rút gọn được nữa, nhưng nếu đề là:

\(B=\sqrt{17+6\sqrt{2}+\sqrt{8+4\sqrt{2}+1}}=\sqrt{18+8\sqrt{2}}=4+\sqrt{2}\)

c/

\(C=\sqrt{8-2\sqrt{7}}+\sqrt{8+2\sqrt{7}}=\sqrt{\left(\sqrt{7}-1\right)^2}+\sqrt{\left(\sqrt{7}+1\right)^2}\)

\(C=\sqrt{7}-1+\sqrt{7}+1=2\sqrt{7}\)

NV
7 tháng 4 2019

\(D=\sqrt{a-2\sqrt{a}+1}-\sqrt{a-8\sqrt{a}+16}\)

\(D=\sqrt{\left(\sqrt{a}-1\right)^2}-\sqrt{\left(4-\sqrt{a}\right)^2}=\sqrt{a}-1-\left(4-\sqrt{a}\right)=2\sqrt{a}-5\)

\(E=\sqrt{a-2+2\sqrt{a-2}+1}+\sqrt{a-2-2\sqrt{a-2}+1}\) (\(a\ge2\))

\(E=\sqrt{\left(\sqrt{a-2}+1\right)^2}+\sqrt{\left(\sqrt{a-2}-1\right)^2}\)

\(E=\sqrt{a-2}+1+\left|\sqrt{a-2}-1\right|\)

\(\Rightarrow\left[{}\begin{matrix}E=2\sqrt{a-2}\left(a\ge3\right)\\E=2\left(2\le a\le3\right)\end{matrix}\right.\)

\(F=\sqrt[3]{10+6\sqrt{3}}-\sqrt{3}=\sqrt[3]{1+3.1.\sqrt{3}+3.1.\sqrt{3}^2+\sqrt{3}^3}-\sqrt{3}\)

\(F=\sqrt[3]{\left(1+\sqrt{3}\right)^3}-\sqrt{3}=1+\sqrt{3}-\sqrt{3}=1\)

\(G=\sqrt[3]{7+5\sqrt{2}}+\sqrt[3]{7-5\sqrt{2}}\Rightarrow G^3=\left(\sqrt[3]{7+5\sqrt{2}}+\sqrt[3]{7-5\sqrt{2}}\right)^3\)

\(\Rightarrow G^3=14+3\left(\sqrt[3]{7+5\sqrt{2}}+\sqrt[3]{7-5\sqrt{2}}\right)\left(\sqrt[3]{49-50}\right)\)

\(\Rightarrow G^3=14-3G\Rightarrow G^3+3G-14=0\)

\(\Rightarrow G=2\)

12 tháng 8 2017

Ok !! chi tiết =))

\(\sqrt{6+\sqrt{24}+\sqrt{12}+\sqrt{8}}-\sqrt{4+2\sqrt{3}}\)

\(=\sqrt{1+2+3+2\sqrt{2}.\sqrt{1}+2\sqrt{2}.\sqrt{3}+2\sqrt{1}.\sqrt{3}}-\sqrt{3+2\sqrt{3}+1}\)

\(=\sqrt{\left(\sqrt{1}+\sqrt{2}+\sqrt{3}\right)^2}-\sqrt{\left(\sqrt{3}+1\right)^2}\)

\(=1+\sqrt{2}+\sqrt{3}-\sqrt{3}-1\)

\(=\sqrt{2}\)

17 tháng 6 2017

câu đầu bạn xem lại đề đi nha 

các phần còn lại

b)B=\(\sqrt{8-2\sqrt{7}}-\sqrt{8+2\sqrt{7}}=\sqrt{7-2\sqrt{7}+1}-\sqrt{7+2\sqrt{7}+1}\)=\(\sqrt{\left(\sqrt{7}-1\right)^2}-\sqrt{\left(\sqrt{7}+1\right)^2}\)=\(\sqrt{7}-1-\left(\sqrt{7}+1\right)=-2\)

c)tính từng căn nha

\(\sqrt{13-4\sqrt{3}}=\sqrt{12-2\sqrt{12}+1}=\sqrt{\left(\sqrt{12}-1\right)^2}=\sqrt{12}-1=2\sqrt{3}-1\)

\(\sqrt{22-12\sqrt{2}}=\sqrt{18-4\sqrt{18}+4}=\sqrt{\left(\sqrt{18}-2\right)^2}=\sqrt{18}-2=3\sqrt{2}-3\)

\(\sqrt{\left(2\sqrt{3}-3\sqrt{2}\right)^2}=3\sqrt{2}-2\sqrt{3}\)

thay vào tính C đc C=2

d)có \(\sqrt{9+4\sqrt{2}}=\sqrt{8+2\sqrt{8}+1}=\sqrt{\left(\sqrt{8}+1\right)^2}=\sqrt{8}+1\)\(\Rightarrow6\sqrt{2+\sqrt{9+4\sqrt{2}}}=6\sqrt{2+\sqrt{8}+1}=6\sqrt{2+2\sqrt{2}+1}\)

=\(6\sqrt{\left(\sqrt{2}+1\right)^2}=6\left(\sqrt{2}+1\right)=6\sqrt{2}+6\)\(\Rightarrow D=\sqrt{17-6\sqrt{2+\sqrt{9+4\sqrt{2}}}}=\sqrt{17-6\sqrt{2}-6}=\sqrt{11-6\sqrt{2}}=\sqrt{9-6\sqrt{2}+2}\)

=\(\sqrt{\left(3-\sqrt{2}\right)^2}=3-\sqrt{2}\)

13 tháng 6 2019

a)\(=\sqrt{\left(\sqrt{5}+\sqrt{3}\right)^2}\)

\(=\sqrt{5}+\sqrt{3}\)

b)\(=\sqrt{\left(4-\sqrt{6}\right)^2}=4-\sqrt{6}\)

c)\(=\sqrt{\left(3-\sqrt{7}\right)^2}\)

\(=3-\sqrt{7}\)