Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có \(\left(x\times0,25\right)\times2000=\left(53+1999\right)\times2000\)
\(\Rightarrow x\times0,25=53+1999\)(triệt tiêu cả 2 vế cho 2000 )
\(\Rightarrow x\times0,25=2052\)
\(\Rightarrow x=2052\div0,25\)
\(\Rightarrow x=8208\)
Vậy x = 8208
Ta có \(\left(1-\frac{1}{97}\right)\times\left(1-\frac{1}{98}\right)\times.....\times\left(1-\frac{1}{1000}\right).\)
\(=\frac{97-1}{97}\times\frac{98-1}{98}\times.....\times\frac{1000-1}{1000}\)
\(=\frac{96}{97}\times\frac{97}{98}\times....\times\frac{999}{1000}\) (rút gọn hết )
\(=\frac{96}{1000}\)
\(=\frac{12}{125}\)
\(X-\frac{2}{3}.\left(X+9\right)=1\)
\(X-\frac{2}{3}X+\frac{2}{3}.9=1\)
\(\left(1-\frac{2}{3}\right)X+6=1\)
\(\frac{1}{3}X+6=1\)
\(\frac{1}{3}X=1-6\)
\(\frac{1}{3}X=-5\)
\(X=-5:\frac{1}{3}\)
\(X=-15\)
Mà lớp 5 chưa học âm đâu
\(\left(1+\frac{1}{2}\right)\times\left(1+\frac{1}{3}\right)\times\left(1+\frac{1}{4}\right)\times....\times\left(1+\frac{1}{98}\right)\times\left(1+\frac{1}{99}\right)\)
\(=\frac{3}{2}\times\frac{4}{3}\times\frac{5}{4}\times....\times\frac{99}{98}\times\frac{100}{99}\)
\(=\frac{3\times4\times5\times...\times99\times100}{2\times3\times4\times....\times98\times99}\)
\(=\frac{100}{2}=50\)
(1+1/2).(1+1/3).(1+1/4)....(1+1/98).(1+1/99)
=3/2.4/3.5/4...99/98.100/99
=3.4.5....99.100/2.3.4....98.99
=100/2
=50
\(100-7\cdot\left(x-5\right)=58\)
\(7\cdot\left(x-5\right)=100-58\)
\(7\cdot\left(x-5\right)=42\)
\(x-5=\frac{42}{7}=6\)
\(\Rightarrow x=6+5\)
\(\Rightarrow x=11\)
\(A=\frac{3}{2}.\frac{4}{3}.\frac{5}{4}...\frac{99}{98}.\frac{100}{99}=\frac{3.4.5....99.100}{2.3.4...98.99}=\frac{100}{2}=50\)
=> A = 50
\(\left(X+\frac{1}{1.3}\right)+\left(X+\frac{1}{3.5}\right)+...+\left(X+\frac{1}{23.25}\right)=11.X+\)\(\left(\frac{1}{3}+\frac{1}{9}+\frac{1}{27}+\frac{1}{81}+\frac{1}{243}\right)\)
\(\Leftrightarrow12X+\left(\frac{1}{1.3}+\frac{1}{3.5}+...+\frac{1}{23.25}\right)+11X\)\(+\frac{\left(1+\frac{1}{3}+...+\frac{1}{81}\right)-\left(\frac{1}{3}+\frac{1}{9}+...+\frac{1}{243}\right)}{2}\)
\(\Leftrightarrow X+\frac{1}{2}\times\left(\frac{1}{1}-\frac{1}{3}+\frac{1}{3}-...-\frac{1}{23}+\frac{1}{23}-\frac{1}{25}\right)=\frac{242}{243}:2\)
\(\Leftrightarrow X+\frac{12}{25}=\frac{121}{243}\)
\(\Leftrightarrow X=\frac{109}{6075}\)
Vậy X=109/6075
Chắc Sai kết quả chứ công thức đúng nha!!!...
Fighting!!!...
Đặt:
\(A=\frac{1}{1.3}+\frac{1}{3.5}+...+\frac{1}{23.25}\)
\(2A=\frac{2}{1.3}+\frac{2}{3.5}+...+\frac{2}{23.25}=\frac{3-1}{1.3}+\frac{5-3}{3.5}+...+\frac{25-23}{23.25}\)
\(=1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+...+\frac{1}{23}-\frac{1}{25}=1-\frac{1}{25}=\frac{24}{25}\)
=> \(A=\frac{12}{25}\)
Đặt \(B=\frac{1}{3}+\frac{1}{9}+\frac{1}{27}+\frac{1}{81}+\frac{1}{243}=\frac{1}{3}+\frac{1}{3^2}+\frac{1}{3^3}+\frac{1}{3^4}+\frac{1}{3^5}\)
\(3B=1+\frac{1}{3}+\frac{1}{3^2}+\frac{1}{3^3}+\frac{1}{3^4}\)
=> \(3B-B=\left(1+\frac{1}{3}+\frac{1}{3^2}+\frac{1}{3^3}+\frac{1}{3^4}\right)-\left(\frac{1}{3}+\frac{1}{3^2}+\frac{1}{3^3}+\frac{1}{3^4}+\frac{1}{3^5}\right)=1-\frac{1}{3^5}=\frac{242}{243}\)
=> \(2B=\frac{242}{243}\Rightarrow B=\frac{121}{243}\)
Giải phương trình:
\(\left(x+\frac{1}{1.3}\right)+\left(x+\frac{1}{3.5}\right)+...+\left(x+\frac{1}{23.25}\right)=11x+\left(\frac{1}{3}+\frac{1}{9}+...+\frac{1}{243}\right)\)
\(12x+\left(\frac{1}{1.3}+\frac{1}{3.5}+...+\frac{1}{23.25}\right)=11x+\left(\frac{1}{3}+\frac{1}{9}+\frac{1}{27}+\frac{1}{81}+\frac{1}{242}\right)\)
\(12x+\frac{12}{25}=11x+\frac{121}{243}\)
\(12x-11x=\frac{121}{243}-\frac{12}{25}\)
\(x=\frac{109}{6075}\)
Hình như đề thiếu mất một vế bạn ak
(x+1)+(x+2)+....+(x+98)+(x+99)
=100x + (1+2+3+....+98+99)
Ta có : 1+2+3...+98+99
Khoảng cách : 1
Số số hạng : (99-1):1+1=99
Tổng dãy : (99+1).99:2=4950
Vậy (x+1)+(x+2)+.....+(x+98)+(x+99)=100x +4950