K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

11 tháng 2 2018

b)       \(x\left(x+1\right)\left(x+2\right)\left(x+3\right)=24\)

\(\Leftrightarrow\)\(\left(x^2+3x\right)\left(x^2+3x+2\right)-24=0\)

Đặt   \(x^2+3x=t\)   ta có:

          \(t\left(t+2\right)-24=0\)

\(\Leftrightarrow\)\(t^2+2t-24=0\)

\(\Leftrightarrow\)\(\left(1-4\right)\left(1+6\right)=0\)

đến đây bn giải tiếp

20 tháng 4 2018

Bài 3 : 

\(\frac{x-1}{2016}+\frac{x-2}{2015}=\frac{x-3}{2014}+\frac{x-4}{2013}\)

\(\Leftrightarrow\)\(\left(\frac{x-1}{2016}-1\right)+\left(\frac{x-2}{2015}-1\right)=\left(\frac{x-3}{2014}-1\right)+\left(\frac{x-4}{2013}-1\right)\)

\(\Leftrightarrow\)\(\frac{x-1-2016}{2016}+\frac{x-2-2015}{2015}=\frac{x-3-2014}{2014}+\frac{x-4-2013}{2013}\)

\(\Leftrightarrow\)\(\frac{x-2017}{2016}+\frac{x-2017}{2015}=\frac{x-2017}{2014}+\frac{x-2017}{2013}\)

\(\Leftrightarrow\)\(\frac{x-2017}{2016}+\frac{x-2017}{2015}-\frac{x-2017}{2014}-\frac{x-2017}{2013}=0\)

\(\Leftrightarrow\)\(\left(x-2017\right)\left(\frac{1}{2016}+\frac{1}{2015}-\frac{1}{2014}-\frac{1}{2013}\right)=0\)

Vì \(\frac{1}{2016}+\frac{1}{2015}-\frac{1}{2014}-\frac{1}{2013}\ne0\)

Nên \(x-2017=0\)

\(\Rightarrow\)\(x=2017\)

Vậy \(x=2017\)

Chúc bạn học tốt ~ 

20 tháng 4 2018

Bài 1 : 

\(\left(8x-5\right)\left(x^2+2014\right)=0\)

\(\Leftrightarrow\)\(\orbr{\begin{cases}8x-5=0\\x^2+2014=0\end{cases}\Leftrightarrow\orbr{\begin{cases}8x=0+5\\x^2=0-2014\end{cases}}}\)

\(\Leftrightarrow\)\(\orbr{\begin{cases}8x=5\\x^2=-2014\end{cases}\Leftrightarrow\orbr{\begin{cases}x=\frac{5}{8}\\x=\sqrt{-2014}\left(loai\right)\end{cases}}}\)

Vậy \(x=\frac{5}{8}\)

Chúc bạn học tốt ~ 

22 tháng 4 2020

d, (x2 + 4x + 8)2 + 3x(x2 + 4x + 8) + 2x2 = 0

Đặt x2 + 4x + 8 = t ta được:

t2 + 3xt + 2x2 = 0

\(\Leftrightarrow\) t2 + xt + 2xt + 2x2 = 0

\(\Leftrightarrow\) t(t + x) + 2x(t + x) = 0

\(\Leftrightarrow\) (t + x)(t + 2x) = 0

Thay t = x2 + 4x + 8 ta được:

(x2 + 4x + 8 + x)(x2 + 4x + 8 + 2x) = 0

\(\Leftrightarrow\) (x2 + 5x + 8)[x(x + 4) + 2(x + 4)] = 0

\(\Leftrightarrow\) (x2 + 5x + \(\frac{25}{4}\) + \(\frac{7}{4}\))(x + 4)(x + 2) = 0

\(\Leftrightarrow\) [(x + \(\frac{5}{2}\))2 + \(\frac{7}{4}\)](x + 4)(x + 2) = 0

Vì (x + \(\frac{5}{2}\))2 + \(\frac{7}{4}\) > 0 với mọi x

\(\Rightarrow\left[{}\begin{matrix}x+4=0\\x+2=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=-4\\x=-2\end{matrix}\right.\)

Vậy S = {-4; -2}

Mình giúp bn phần khó thôi!

Chúc bn học tốt!!

22 tháng 4 2020

c) \(\frac{1}{x-1}\)+\(\frac{2x^2-5}{x^3-1}\)=\(\frac{4}{x^2+x+1}\) (ĐKXĐ:x≠1)

\(\frac{x^2+x+1}{\left(x-1\right)\left(x^2+x+1\right)}\)+\(\frac{2x^2-5}{\left(x-1\right)\left(x^2+x+1\right)}\)=\(\frac{4\left(x-1\right)}{\left(x-1\right)\left(x^2+x+1\right)}\)

⇒x2+x+1+2x2-5=4x-4

⇔3x2-3x=0

⇔3x(x-1)=0

⇔x=0 (TMĐK) hoặc x=1 (loại)

Vậy tập nghiệm của phương trình đã cho là:S={0}

3 tháng 8 2020

\(5X\left(X-2020\right)+X=2020\)

\(\Leftrightarrow5X^2-10100X+X=2020\)

\(\Leftrightarrow5X^2-10099X=2020\)

\(\Leftrightarrow5X^2-10099X-2020=0\)

\(\Leftrightarrow5X^2-10100X+x-2020=0\)

\(\Leftrightarrow5X\left(X-2020\right)+X-2020=0\)

\(\Leftrightarrow\left(X-2020\right)\left(5X+1\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}x=2020\\x=-\frac{1}{5}\end{cases}}\)

3 tháng 8 2020

\(4\left(x-5\right)^2-\left(2x+1\right)^2=0\)

\(\Leftrightarrow\left[2\left(x-5\right)\right]^2-\left(2x+1\right)^2=0\)

\(\Leftrightarrow\left[2\left(x-5\right)-2x-1\right]\left[2\left(x-5\right)+2x+1\right]=0\)

\(\Leftrightarrow\left(2x-10-2x-1\right)\left(2x-10+2x+1\right)=0\)

\(\Leftrightarrow-11\left(4x-9\right)=0\)

\(\Leftrightarrow x=\frac{9}{4}\)

26 tháng 4 2018

a)  \(\left(2x+1\right)\left(3x-2\right)=\left(2x+1\right)\left(5x-8\right)\)

\(\Leftrightarrow\)\(\left(2x+1\right)\left(3x-2\right)-\left(2x+1\right)\left(5x-8\right)=0\)

\(\Leftrightarrow\)\(\left(2x+1\right)\left(3x-2-5x+8\right)=0\)

\(\Leftrightarrow\)\(\left(2x+1\right)\left(6-2x\right)=0\)

\(\Leftrightarrow\)\(\orbr{\begin{cases}2x+1=0\\6-2x=0\end{cases}}\)

\(\Leftrightarrow\)\(\orbr{\begin{cases}x=-0,5\\x=3\end{cases}}\)

Vậy...

b)   \(ĐKXĐ:\)  \(x\ne-2;\) \(x\ne4\)

          \(\frac{3}{x+2}+\frac{2}{x-4}=0\)

\(\Leftrightarrow\)\(\frac{3\left(x-4\right)}{\left(x+2\right)\left(x-4\right)}+\frac{2\left(x+2\right)}{\left(x+2\right)\left(x-4\right)}=0\)

\(\Leftrightarrow\)\(\frac{3x-12+2x+4}{\left(x+2\right)\left(x-4\right)}=0\)

\(\Leftrightarrow\)\(\frac{5x-8}{\left(x+2\right)\left(x-4\right)}=0\)

\(\Rightarrow\)\(5x-8=0\)

\(\Leftrightarrow\)\(x=\frac{8}{5}\) (T/m đkxđ)

Vậy...

c)  \(x^3+4x^2+4x+3=0\)

\(\Leftrightarrow\)\(x^3+3x^2+x^2+3x+x+3=0\)

\(\Leftrightarrow\)\(x^2\left(x+3\right)+x\left(x+3\right)+\left(x+3\right)=0\)

\(\Leftrightarrow\)\(\left(x+3\right)\left(x^2+x+1\right)=0\)

\(\Leftrightarrow\)\(x+3=0\)  (do  \(x^2+x+1=\left(x+\frac{1}{2}\right)^2+\frac{3}{4}>0\) \(\forall x\))

\(\Leftrightarrow\)\(x=-3\)

Vậy...

26 tháng 4 2018

có thể làm giùm 3 câu còn lại ko bn:)

Dạng 1: Phương trình bậc nhất Bài 1: Giải các phương trình sau : a) 0,5x (2x - 9) = 1,5x (x - 5) b) 28 (x - 1) - 9 (x - 2) = 14x c) 8 (3x - 2) - 14x = 2 (4 - 7x) + 18x d) 2 (x - 5) - 6 (1 - 2x) = 3x + 2 e) \(\frac{x+7}{2}-\frac{x-3}{5}=\frac{x}{6}\) f) \(\frac{2x-3}{3}-\frac{5x+2}{12}=\frac{x-3}{4}+1\) g) \(\frac{x+6}{2}+\frac{2\left(x+17\right)}{2}+\frac{5\left(x-10\right)}{6}=2x+6\) h) \(\frac{3x+2}{5}-\frac{4x-3}{7}=4+\frac{x-2}{35}\) i)...
Đọc tiếp

Dạng 1: Phương trình bậc nhất

Bài 1: Giải các phương trình sau :

a) 0,5x (2x - 9) = 1,5x (x - 5)

b) 28 (x - 1) - 9 (x - 2) = 14x

c) 8 (3x - 2) - 14x = 2 (4 - 7x) + 18x

d) 2 (x - 5) - 6 (1 - 2x) = 3x + 2

e) \(\frac{x+7}{2}-\frac{x-3}{5}=\frac{x}{6}\)

f) \(\frac{2x-3}{3}-\frac{5x+2}{12}=\frac{x-3}{4}+1\)

g) \(\frac{x+6}{2}+\frac{2\left(x+17\right)}{2}+\frac{5\left(x-10\right)}{6}=2x+6\)

h) \(\frac{3x+2}{5}-\frac{4x-3}{7}=4+\frac{x-2}{35}\)

i) \(\frac{x-1}{2}+\frac{x+3}{3}=\frac{5x+3}{6}\)

j) \(\frac{x-3}{5}-1=\frac{4x+1}{4}\)

Dạng 2: Phương trình tích

Bài 2: Giải phương trình sau :

a) (x + 1) (5x + 3) = (3x - 8) (x - 1)

b) (x - 1) (2x - 1) = x(1 - x)

c) (2x - 3) (4 - x) (x - 3) = 0

d) (x + 1)2 - 4x2 = 0

e) (2x + 5)2 = (x + 3)2

f) (2x - 7) (x + 3) = x2 - 9

g) (3x + 4) (x - 4) = (x - 4)2

h) x2 - 6x + 8 = 0

i) x2 + 3x + 2 = 0

j) 2x2 - 5x + 3 = 0

k) x (2x - 7) - 4x + 14 = 9

l) (x - 2)2 - x + 2 = 0

Dạng 3: Phương trình chứa ẩn ở mẫu

Bài 3: Giải phương trình sau :

\(\frac{90}{x}-\frac{36}{x-6}=2\) \(\frac{3}{x+2}-\frac{2}{x-3}=\frac{8}{\left(x-3\right)\left(x+2\right)}\)
\(\frac{1}{x}+\frac{1}{x+10}=\frac{1}{12}\) \(\frac{1}{2x-3}-\frac{3}{x\left(2x-3\right)}=\frac{5}{x}\)
\(\frac{x+3}{x-3}-\frac{1}{x}=\frac{3}{x\left(x-3\right)}\) \(\frac{3}{4\left(x-5\right)}+\frac{15}{50-2x^2}=\frac{-7}{6\left(x+5\right)}\)
\(\frac{3}{x+2}-\frac{2}{x-2}+\frac{8}{x^2-4}=0\) \(\frac{x}{x+1}-\frac{2x-3}{1-x}=\frac{3x^2+5}{x^2-1}\)

0
30 tháng 4 2020

bài 1: 

a) ĐKXĐ: x khác 0; x khác -1

 \(\frac{x-1}{x}+\frac{1-2x}{x^2+x}=\frac{1}{x+1}\)

<=> \(\frac{x-1}{x}+\frac{1-2x}{x\left(x+1\right)}=\frac{1}{x+1}\)

<=> (x - 1)(x + 1) + 1 - 2x = x

<=> x^2 - 2x = x

<=> x^2 - 2x - x = 0

<=> x^2 - 3x = 0

<=> x(x - 3) = 0

<=> x = 0 hoặc x - 3 = 0

<=> x = 0 hoặc x = 0 + 3

<=> x = 0 (ktm) hoặc x = 3 (tm)

=> x = 3

b) ĐKXĐ: x khác +-3; x khác -7/2

\(\frac{13}{\left(x-3\right)\left(2x+7\right)}+\frac{1}{2x+7}=\frac{6}{x^2-9}\)

<=> \(\frac{13}{\left(x-3\right)\left(2x+7\right)}+\frac{1}{2x+7}=\frac{6}{\left(x-3\right)\left(x+3\right)}\)

<=> 13(x + 3) + (x - 3)(x + 3) = 6(2x + 7)

<=> 13x + 30 + x^2 = 12x + 42

<=> 13x + 30 + x^2 - 12x - 42 = 0

<=> x - 12 + x^2 = 0

<=> (x - 3)(x + 4) = 0

<=> x - 3 = 0 hoặc x + 4 = 0

<=> x = 0 + 3 hoặc x = 0 - 4

<=> x = 3 (ktm) hoặc x = -4 (tm)

=> x = -4

c) ĐKXĐ: x khác +-1

\(\frac{x}{x-1}-\frac{2x}{\left(x-1\right)\left(x+1\right)}=0\)

<=> x(x + 1) - 2x = 0

<=> x^2 + x - 2x = 0

<=> x^2 - x = 0

<=> x(x - 1) = 0

<=> x = 0 hoặc x - 1 = 0

<=> x = 0 hoặc x = 0 + 1

<=> x = 0 (tm) hoặc x = 1 (ktm)

=> x = 0

d) \(\frac{x^2+2x}{x^2+1}-2x=0\)

<=> \(\frac{x\left(x+2\right)}{x^2+1}-2x=0\)

<=> x(x + 2) - 2x(x^2 + 1) = 0

<=> x^2 - 2x^3 = 0

<=> x^2(1 - 2x) = 0

<=> x^2 = 0 hoặc 1 - 2x = 0

<=> x = 0 hoặc -2x = 0 - 1

<=> x = 0 hoặc -2x = -1

<=> x = 0 hoặc x = 1/2

30 tháng 4 2020

bài 2: 

(x - 1)(x^2 + 3x - 2) - (x^3 - 1) = 0

<=> x^3 + 3x^2 - 2x - x^2 - 3x + 2 - x^2 + 1 = 0

<=> 2x^2 - 2x - 3x + 3 = 0

<=> 2x(x - 1) - 3(x - 1) = 0

<=> (2x - 3)(x - 1) = 0

<=> 2x - 3 = 0 hoặc x - 1 = 0

<=> 2x = 0 + 3 hoặc x = 0 + 1

<=> 2x = 3 hoặc x = 1

<=> x = 3/2 hoặc x = 1

bài 3:

(x^3 + x^2) + (x^2 + x) = 0

<=> x^3 + x^2 + x^2 + x = 0

<=> x^3 + 2x^2 + x = 0

<=> x(x^2 + 2x + 1) = 0

<=> x(x + 1)^2 = 0

<=> x = 0 hoặc x + 1 = 0

<=> x = 0 hoặc x = 0 - 1

<=> x = 0 hoặc x = -1

3 tháng 1 2021

a) 3x - 2(5 + 2x) =45 - 2x

=> 3x - 10 - 4x = 45 - 2x

=> 3x - 4x + 2x = 45 + 10

=> x = 55

b) \(\frac{x-3}{5}=6-\frac{1-2x}{3}\)

=> \(\frac{x-3}{5}=\frac{2x+17}{3}\)

=> 5(2x + 17) = 3(x - 3)

=> 10x + 85 = 3x - 9

=> 7x = -94

=> x = -94/7

c) \(\frac{5\left(x-1\right)+2}{6}-\frac{7x-1}{4}=\frac{2\left(2x+1\right)}{7}-5\)

=> \(\frac{5x-3}{6}-\frac{7x-1}{4}=\frac{4x-33}{7}\)

=> \(\frac{10x-6}{12}-\frac{21x-3}{12}=\frac{4x-33}{7}\)

=> \(\frac{-11x-3}{12}=\frac{4x-33}{7}\)

=> (-11x - 3).7 = (4x - 33).12

= -77x - 21 = 48x - 396

=> x = 3

d) (x - 1)(5x + 3) = (3x - 8)(x - 1)

=> (x - 1)(5x + 3) - (3x - 8)(x -1) = 0

=> (x - 1)(2x + 11) = 0

=> \(\orbr{\begin{cases}x-1=0\\2x+11=0\end{cases}}\Rightarrow\orbr{\begin{cases}x=1\\x=-5,5\end{cases}}\) 

e) (x - 1)(x2 + 5x - 2) - (x3 - 1) = 0

=> (x - 1)(x2 + 5x - 2) - (x - 1)(x2 + x + 1) = 0

=> (x - 1)(4x - 3) = 0

=> \(\orbr{\begin{cases}x-1=0\\4x-3=0\end{cases}}\Rightarrow\orbr{\begin{cases}x=1\\x=0,75\end{cases}}\)

f) \(\frac{x-17}{33}+\frac{x-21}{29}+\frac{x}{25}=4\) 

=> \(\left(\frac{x-17}{33}-1\right)+\left(\frac{x-21}{29}-1\right)+\left(\frac{x}{25}-2\right)=0\)

=> \(\frac{x-50}{33}+\frac{x-50}{29}+\frac{x-50}{25}=0\)

=> \(\left(x-50\right)\left(\frac{1}{33}+\frac{1}{29}+\frac{1}{25}\right)=0\)

=> x - 50 = 0 (Vì \(\frac{1}{33}+\frac{1}{29}+\frac{1}{25}\ne0\))

=> x = 50

3 tháng 1 2021

b, \(\frac{x-3}{5}=6-\frac{1-2x}{3}\)

\(\Leftrightarrow\frac{x-3}{5}=\frac{17+2x}{3}\Leftrightarrow3x-9=85+10x\)

\(\Leftrightarrow-7x=94\Leftrightarrow x=-\frac{94}{7}\)

f, sửa : \(\frac{x+1}{65}+\frac{x+3}{63}=\frac{x+5}{61}+\frac{x+7}{59}\)

\(\Leftrightarrow\frac{x+1}{65}+1+\frac{x+3}{63}+1=\frac{x+5}{61}+1+\frac{x+7}{59}+1\)

\(\Leftrightarrow\frac{x+66}{65}+\frac{x+66}{63}=\frac{x+66}{61}+\frac{x+66}{59}\)

\(\Leftrightarrow\frac{x+66}{65}+\frac{x+66}{63}-\frac{x+66}{61}-\frac{x+66}{59}=0\)

\(\Leftrightarrow\left(x+66\right)\left(\frac{1}{65}+\frac{1}{63}-\frac{1}{61}-\frac{1}{59}\ne0\right)=0\)

\(\Leftrightarrow x=-66\)