Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
c/
\(\Leftrightarrow\sqrt{2}sin\left(x+\frac{\pi}{4}-\frac{\pi}{4}\right)=1\)
\(\Leftrightarrow sinx=\frac{\sqrt{2}}{2}\)
\(\Rightarrow\left[{}\begin{matrix}x=\frac{\pi}{4}+k2\pi\\x=\frac{3\pi}{4}+k2\pi\end{matrix}\right.\)
d/
\(\Leftrightarrow sin2x-2cos2x-5=2sin2x-cos2x-6\)
\(\Leftrightarrow sin2x+cos2x=1\)
\(\Leftrightarrow\sqrt{2}sin\left(2x+\frac{\pi}{4}\right)=1\)
\(\Leftrightarrow sin\left(2x+\frac{\pi}{4}\right)=\frac{\sqrt{2}}{2}\)
\(\Rightarrow\left[{}\begin{matrix}2x+\frac{\pi}{4}=\frac{\pi}{4}+k2\pi\\2x+\frac{\pi}{4}=\frac{3\pi}{4}+k2\pi\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x=k\pi\\x=\frac{\pi}{4}+k\pi\end{matrix}\right.\)
a/ ĐKXĐ:...
\(\Leftrightarrow\frac{sinx}{cosx}-\frac{\sqrt{2}}{cosx}=1\)
\(\Leftrightarrow sinx-\sqrt{2}=cosx\)
\(\Leftrightarrow sinx-cosx=\sqrt{2}\)
\(\Leftrightarrow\sqrt{2}sin\left(x-\frac{\pi}{4}\right)=\sqrt{2}\)
\(\Leftrightarrow sin\left(x-\frac{\pi}{4}\right)=1\)
\(\Leftrightarrow x-\frac{\pi}{4}=\frac{\pi}{2}+k2\pi\)
\(\Leftrightarrow x=\frac{3\pi}{4}+k2\pi\)
b/
ĐKXĐ: ...
\(\Leftrightarrow\left(2sinx-1\right)\left(sin4x-1\right)+cos4x\left(2sinx-1\right)=0\)
\(\Leftrightarrow2sinx.sin4x-2sinx-sin4x+1+2sinx.cos4x-cos4x=0\)
\(\Leftrightarrow2sinx\left(sin4x+cos4x\right)-\left(sin4x+cos4x\right)-\left(2sinx-1\right)=0\)
\(\Leftrightarrow\left(2sinx-1\right)\left(sin4x+cos4x\right)-\left(2sinx-1\right)=0\)
\(\Leftrightarrow\left(2sinx-1\right)\left(sin4x+cos4x-1\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}sinx=\frac{1}{2}\\sin4x+cos4x=1\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}sinx=\frac{1}{2}\\sin\left(4x+\frac{\pi}{4}\right)=\frac{\sqrt{2}}{2}\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=\frac{\pi}{6}+k2\pi\\x=\frac{5\pi}{6}+k2\pi\\4x+\frac{\pi}{4}=\frac{\pi}{4}+k2\pi\\4x+\frac{\pi}{4}=\frac{3\pi}{4}+k2\pi\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=\frac{\pi}{6}+k2\pi\\x=\frac{5\pi}{6}+k2\pi\\x=\frac{k\pi}{2}\\x=\frac{\pi}{8}+\frac{k\pi}{2}\left(l\right)\end{matrix}\right.\)
\(sin3x-sinx+sin2x=0\)
\(\Leftrightarrow2cos2x.sinx+2sinx.cosx=0\)
\(\Leftrightarrow sinx\left(cos2x+cosx\right)=0\)
\(\Leftrightarrow2sinx.cos\frac{3x}{2}.cos\frac{x}{2}=0\)
\(\Rightarrow\left[{}\begin{matrix}sinx=0\\cos\frac{x}{2}=0\\cos\frac{3x}{2}=0\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x=k\pi\\\frac{x}{2}=\frac{\pi}{2}+k\pi\\\frac{3x}{2}=\frac{\pi}{2}+k\pi\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x=k\pi\\x=\pi+k2\pi\\x=\frac{\pi}{3}+\frac{k2\pi}{3}\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}x=k\pi\\x=\frac{\pi}{3}+\frac{k2\pi}{3}\end{matrix}\right.\)
\(cosx+cos3x+cos2x+cos4x=0\)
\(\Leftrightarrow2cos2x.cosx+2cos3x.cosx=0\)
\(\Leftrightarrow cosx\left(cos2x+cos3x\right)=0\)
\(\Leftrightarrow2cosx.cos\frac{5x}{2}.cos\frac{x}{2}=0\)
\(\Rightarrow\left[{}\begin{matrix}cosx=0\\cos\frac{x}{2}=0\\cos\frac{5x}{2}=0\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x=\frac{\pi}{2}+k\pi\\\frac{x}{2}=\frac{\pi}{2}+k\pi\\\frac{5x}{2}=\frac{\pi}{2}+k\pi\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x=\frac{\pi}{2}+k\pi\\x=\pi+k2\pi\\x=\frac{\pi}{5}+\frac{k2\pi}{5}\end{matrix}\right.\)
c.
\(\Leftrightarrow2sin2x.cos2x+\sqrt{3}sin2x=0\)
\(\Leftrightarrow sin2x\left(2cos2x+\sqrt{3}\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}sin2x=0\\cos2x=-\frac{\sqrt{3}}{2}\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}2x=k\pi\\2x=\frac{5\pi}{6}+k2\pi\\2x=-\frac{5\pi}{6}+k2\pi\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=\frac{k\pi}{2}\\x=\frac{5\pi}{12}+k\pi\\x=-\frac{5\pi}{12}+k\pi\end{matrix}\right.\)
d.
\(\Leftrightarrow\left[{}\begin{matrix}sin2x=-\sqrt{2}< -1\left(l\right)\\sin2x=-\frac{\sqrt{2}}{2}\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}2x=-\frac{\pi}{4}+k2\pi\\2x=\frac{5\pi}{4}+k2\pi\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=-\frac{\pi}{8}+k\pi\\x=\frac{5\pi}{8}+k\pi\end{matrix}\right.\)
a.
\(\Leftrightarrow\left[{}\begin{matrix}sinx=\frac{1}{2}\\cosx=\frac{5}{\sqrt{3}}>1\left(l\right)\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=\frac{\pi}{6}+k2\pi\\x=\frac{5\pi}{6}+k2\pi\end{matrix}\right.\)
b.
\(\Leftrightarrow\frac{1}{2}sin4x.cos4x+\frac{1}{8}=0\)
\(\Leftrightarrow\frac{1}{4}sin8x+\frac{1}{8}=0\)
\(\Leftrightarrow sin8x=-\frac{1}{2}\)
\(\Leftrightarrow\left[{}\begin{matrix}8x=-\frac{\pi}{6}+k2\pi\\8x=\frac{7\pi}{6}+k2\pi\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=-\frac{\pi}{48}+\frac{k\pi}{4}\\x=\frac{7\pi}{48}+\frac{k\pi}{4}\end{matrix}\right.\)
c/
\(\Leftrightarrow sin3x=-cosx\)
\(\Leftrightarrow sin3x=sin\left(x-\frac{\pi}{2}\right)\)
\(\Rightarrow\left[{}\begin{matrix}3x=x-\frac{\pi}{2}+k2\pi\\3x=\frac{3\pi}{2}-x+k2\pi\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x=-\frac{\pi}{4}+k\pi\\x=\frac{3\pi}{8}+\frac{k\pi}{2}\end{matrix}\right.\)
d/
\(\Leftrightarrow2sinx.cosx+\sqrt{3}sinx=0\)
\(\Leftrightarrow sinx\left(2cosx+\sqrt{3}\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}sinx=0\\cosx=-\frac{\sqrt{3}}{2}=cos\left(\frac{5\pi}{6}\right)\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x=k\pi\\x=\frac{5\pi}{6}+k2\pi\\x=-\frac{5\pi}{6}+k2\pi\end{matrix}\right.\)
a/
\(\Leftrightarrow\left[{}\begin{matrix}cos2x+1=0\\cos2x+2=0\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}cos2x=-1\\cos2x=-2\left(vn\right)\end{matrix}\right.\)
\(\Rightarrow2x=\pi+k2\pi\)
\(\Rightarrow x=\frac{\pi}{2}+k\pi\)
b/
\(\Leftrightarrow cos5x=sin40^0\)
\(\Leftrightarrow cos5x=cos50^0\)
\(\Leftrightarrow\left[{}\begin{matrix}5x=50^0+k360^0\\5x=-50^0+k360^0\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x=10^0+k72^0\\x=-10^0+k72^0\end{matrix}\right.\)
e/
\(\Leftrightarrow1+cos2x+1+cos4x+1+cos6x=3+3cosx.cos4x\)
\(\Leftrightarrow cos2x+cos6x+cos4x-3cosx.cos4x=0\)
\(\Leftrightarrow2cos4x.cos2x+cos4x-3cosx.cos4x=0\)
\(\Leftrightarrow cos4x\left(2cos2x+1-3cosx\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}cos4x=0\Rightarrow x=\frac{\pi}{8}+\frac{k\pi}{4}\\2cos2x-3cosx+1=0\left(1\right)\end{matrix}\right.\)
\(\left(1\right)\Leftrightarrow2\left(2cos^2x-1\right)-3cosx+1=0\)
\(\Leftrightarrow4cos^2x-3cosx-1=0\)
\(\Rightarrow\left[{}\begin{matrix}cosx=1\\cosx=-\frac{1}{4}\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x=k2\pi\\x=\pm arccos\left(-\frac{1}{4}\right)+k2\pi\end{matrix}\right.\)
d/
\(\Leftrightarrow5\left(1+cosx\right)=2+\left(sin^2x-cos^2x\right)\left(sin^2x+cos^2x\right)\)
\(\Leftrightarrow5\left(1+cosx\right)=2+sin^2x-cos^2x\)
\(\Leftrightarrow5+5cosx=2+1-cos^2x-cos^2x\)
\(\Leftrightarrow2cos^2x+5cosx+2=0\)
\(\Rightarrow\left[{}\begin{matrix}cosx=-\frac{1}{2}\\cosx=-2\left(l\right)\end{matrix}\right.\)
\(\Rightarrow x=\pm\frac{2\pi}{3}+k2\pi\)
a) Đk: sinx \(\ne\)0<=>x\(\ne\)k\(\Pi\)
pt<=>\(\sqrt{3}\)(1-cos2x)-cosx=0
<=>\(\sqrt{3}\)[1-(2cos2x-1)]-cosx=0
<=>2\(\sqrt{3}\)-2\(\sqrt{3}\)cos2x-cosx=0
<=>\(\left\{{}\begin{matrix}cosx=\dfrac{\sqrt{3}}{2}\\cosx=-\dfrac{2\sqrt{3}}{3}< -1\left(loai\right)\end{matrix}\right.\)
tới đây bạn tự giải cho quen, chứ chép thì thành ra không hiểu gì thì khổ
b)pt<=>2sin2x+2sin2x=1
<=>2sin2x+2sin2x=sin2x+cos2x
<=>4sinx.cosx+sin2x-cos2x=0
Tới đây là dạng của pt đẳng cấp bậc 2, ta thấy cosx=0 không phải là nghiệm của pt nên ta chia cả hai vế của pt cho cos2x:
pt trở thành:
4tanx+tan2x-1=0
<=>\(\left[{}\begin{matrix}tanx=-2+\sqrt{2}\\tanx=-2-\sqrt{5}\end{matrix}\right.\)
<=>\(\left[{}\begin{matrix}x=arctan\left(-2+\sqrt{5}\right)+k\Pi\\x=arctan\left(-2-\sqrt{5}\right)+k\Pi\end{matrix}\right.\)(k thuộc Z)
Chú ý: arctan tương ứng ''SHIFT tan'' (khi thử nghiệm trong máy tính)
c)Đk: cosx\(\ne\)0<=>x\(\ne\)\(\dfrac{\Pi}{2}\)+kpi
pt<=>cos2x+\(\sqrt{3}\)sin2x=1
<=>1-sin2x+\(\sqrt{3}\)sin2x-1=0
<=>(\(\sqrt{3}\)-1)sin2x=0
<=>sinx=0<=>x=k\(\Pi\)(k thuộc Z)
d)
pt<=>\(\sqrt{3}\)sin7x-cos7x=\(\sqrt{2}\)
Khúc này bạn coi SGK trang 35 người ta giả thích rõ ràng rồi
pt<=>\(\dfrac{\sqrt{3}}{2}\)sin7x-\(\dfrac{1}{2}\)cos7x=\(\dfrac{\sqrt{2}}{2}\)
<=>sin(7x-\(\dfrac{\Pi}{3}\))=\(\dfrac{\sqrt{2}}{2}\)
<=>sin(7x-\(\dfrac{\Pi}{3}\))=sin\(\dfrac{\Pi}{4}\)
Tới đây bạn tự giải nhé, giải ra nghiệm rồi kiểm tra xem nghiệm nào thuộc khoảng ( đề cho) rồi kết luận
Câu d) mình nhầm nhé
<=>sin(7x-\(\dfrac{\Pi}{6}\))=\(\dfrac{\sqrt{2}}{2}\) mới đúng sorry
\(sin2x=\sqrt{3}cos2x\)
Nhận thấy cos2x=0 ko phải nghiệm, pt tương đương:
\(\frac{sin2x}{cos2x}=\sqrt{3}\Leftrightarrow tan2x=\sqrt{3}\)
\(\Rightarrow2x=\frac{\pi}{3}+k\pi\Rightarrow x=\frac{\pi}{6}+\frac{k\pi}{2}\)
b/
\(cos\left(90^0-x\right)=-sin2x=cos\left(2x+90^0\right)\)
\(\Rightarrow\left[{}\begin{matrix}90^0-x=2x+90^0+k360^0\\90^0-x=-2x-90^0+k360^0\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x=k120^0\\x=-180^0+k360^0\end{matrix}\right.\)
c/ Giống câu a
\(\Leftrightarrow tanx=-\sqrt{3}\Rightarrow x=-\frac{\pi}{3}+k\pi\)
c/
\(\Leftrightarrow2cos4x.sin3x=cos4x\)
\(\Leftrightarrow\left[{}\begin{matrix}cos4x=0\\2sin3x=1\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}cos4x=0\\sin3x=\frac{1}{2}\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}4x=\frac{\pi}{2}+k\pi\\3x=\frac{\pi}{6}+k2\pi\\3x=\frac{5\pi}{6}+k2\pi\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=\frac{\pi}{8}+\frac{k\pi}{4}\\x=\frac{\pi}{18}+\frac{k2\pi}{3}\\x=\frac{5\pi}{18}+\frac{k2\pi}{3}\end{matrix}\right.\)
d/
\(\Leftrightarrow6sinx+3cosx+3=sinx-2cosx+3\)
\(\Leftrightarrow sinx+cosx=0\)
\(\Leftrightarrow sin\left(x+\frac{\pi}{4}\right)=0\Leftrightarrow x=-\frac{\pi}{4}+k\pi\)
a/
\(\Leftrightarrow\frac{\sqrt{3}}{2}cosx-\frac{1}{2}sinx=sin4x\)
\(\Leftrightarrow sin\left(\frac{\pi}{3}-x\right)=sin4x\)
\(\Leftrightarrow\left[{}\begin{matrix}4x=\frac{\pi}{3}-x+k2\pi\\4x=\frac{2\pi}{3}+x+k2\pi\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=\frac{\pi}{15}+\frac{k2\pi}{5}\\x=\frac{2\pi}{9}+\frac{k2\pi}{3}\end{matrix}\right.\)
b/
\(\Leftrightarrow2sinx.cosx+4sinx.cos^2x-2sinx=0\)
\(\Leftrightarrow2sinx\left(cosx+2cos^2x-1\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}sinx=0\\2cos^2x+cosx-1=0\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}sinx=0\\cosx=-1\\cosx=\frac{1}{2}\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=k\pi\\x=\pm\frac{\pi}{3}+k2\pi\end{matrix}\right.\)
e/
ĐKXĐ: ...
\(\Leftrightarrow\frac{2sin4x.cos2x}{cos2x}-2cos4x=2\sqrt{2}\)
\(\Leftrightarrow2sin4x-2cos4x=2\sqrt{2}\)
\(\Leftrightarrow sin4x-cos4x=\sqrt{2}\)
\(\Leftrightarrow\sqrt{2}sin\left(4x-\frac{\pi}{4}\right)=\sqrt{2}\)
\(\Leftrightarrow sin\left(4x-\frac{\pi}{4}\right)=1\)
\(\Leftrightarrow4x-\frac{\pi}{4}=\frac{\pi}{2}+k2\pi\)
\(\Rightarrow x=\frac{3\pi}{16}+\frac{k\pi}{2}\)
d/
Đặt \(sin2x-cos2x=\sqrt{2}sin\left(2x-\frac{\pi}{4}\right)=t\Rightarrow\left|t\right|\le\sqrt{2}\)
\(\Rightarrow t^2-3t-4=0\Rightarrow\left[{}\begin{matrix}t=-1\\t=4\left(l\right)\end{matrix}\right.\)
\(\Rightarrow\sqrt{2}sin\left(2x-\frac{\pi}{4}\right)=-1\)
\(\Leftrightarrow sin\left(2x-\frac{\pi}{4}\right)=-\frac{\sqrt{2}}{2}\)
\(\Leftrightarrow\left[{}\begin{matrix}2x-\frac{\pi}{4}=-\frac{\pi}{4}+k2\pi\\2x-\frac{\pi}{4}=\frac{5\pi}{4}+k2\pi\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x=k\pi\\x=\frac{3\pi}{4}+k\pi\end{matrix}\right.\)
\(cos11x.cos3x=cos17x.cos9x\)
\(\Leftrightarrow\frac{1}{2}\left(cos24x+cos8x\right)=\frac{1}{2}\left(cos26x+cos8x\right)\)
\(\Leftrightarrow cos24x=cos26x\)
\(\Rightarrow\left[{}\begin{matrix}26x=24x+k2\pi\\26x=-24x+k2\pi\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x=k\pi\\x=\frac{k\pi}{25}\end{matrix}\right.\)
\(sin18x.cos13x=sin9x.cos4x\)
\(\Leftrightarrow\frac{1}{2}\left(sin31x+sin5x\right)=\frac{1}{2}\left(sin13x+sin5x\right)\)
\(\Leftrightarrow sin31x=sin13x\)
\(\Rightarrow\left[{}\begin{matrix}31x=13x+k2\pi\\31x=\pi-13x+k2\pi\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x=\frac{k\pi}{9}\\x=\frac{\pi}{44}+\frac{k\pi}{22}\end{matrix}\right.\)
\(sin2x-2sinx=0\)
\(\Leftrightarrow2sinx.cosx-2sinx=0\)
\(\Leftrightarrow sinx\left(cosx-1\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}sinx=0\\cosx=1\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x=k\pi\\x=k2\pi\end{matrix}\right.\) \(\Rightarrow x=k\pi\)
\(cosx.cos4x-cosx.cos2x=0\)
\(\Leftrightarrow cosx\left(cos4x-cos2x\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}cosx=0\\cos4x=cos2x\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x=\frac{\pi}{2}+k\pi\\4x=2x+k2\pi\\4x=-2x+k2\pi\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x=\frac{\pi}{2}+k\pi\\x=k\pi\\x=\frac{k\pi}{3}\end{matrix}\right.\)