K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: \(\dfrac{1}{x-2}+3=\dfrac{3-x}{x-2}\)

=>1+3x-6=3-x

=>3x-5=3-x

=>4x=8

hay x=2(loại)

b: \(\Leftrightarrow8-x-8\left(x-7\right)=-26\)

=>8-x-8x+56=-26

=>-9x+64=-26

=>-9x=-90

hay x=10(nhận)

c: \(\dfrac{1}{x-2}+\dfrac{1}{x-3}=\dfrac{2}{x-1}\)

\(\Leftrightarrow\dfrac{x-3+x-2}{\left(x-2\right)\left(x-3\right)}=\dfrac{2}{x-1}\)

\(\Leftrightarrow\left(x-1\right)\left(2x-5\right)=2\left(x^2-5x+6\right)\)

\(\Leftrightarrow2x^2-5x-2x+5=2x^2-10x+12\)

=>-7x+10x=12-5

=>3x=7

hay x=7/3(nhận)

27 tháng 3 2020

\(\text{a) 5(2x-3)-4(5x-7)=19-2(x+11)}\)

\(10x-15-20x+28=19-2x-22\)

\(10x-20x+2x=19-22-28+15\)

\(-8x=-16\)

\(\Rightarrow x=2\)

\(\text{b) 4(x+3)-7x+17=8(5x-1)+166}\)

\(4x+12-7x+17=40x-8+166\)

\(4x-7x-40x=-8+166-17-12\)

\(-43x=129\)

\(x=-3\)

\(\text{c) 17-14(x+1)=13-4(x+1)-5(x-3)}\)

\(17-14x+14=13-4x-4-5x+15\)

\(-14x+4x+5x=13-4+15-14-17\)

\(-5x=-7\)

\(x=\frac{7}{5}\)

\(\text{d) 5x+3,5+(3x-4)=7x-3(x-0,5)}\)

\(5x+3,5+3x-4=7x-3x+1,5\)

\(5x+3x-7x+3x=1,5-3,5\)

\(x=-2\)

\(\text{e) 7(4x+3)-4(x-1)=15(x+0,75)+7}\)

\(28x+21-4x+4=15x+11,25+7\)

\(28x-4x-15x=11,25+7-4-21\)

\(9x=\frac{-27}{4}\)

\(x=\frac{-3}{4}\)

\(\text{f) 3x+2,42+o,8x=3,38-0,2x}\)

\(3x+0,8x+0,2x=3,38-2,42\)

\(4x=\frac{24}{25}\)

\(x=\frac{6}{25}\)

chúc bạn học tốt !!

10 tháng 4 2020

* 4x - 1 = 3x - 2

⇔ 4x - 3x = -2 + 1

⇔ x = -1

Vậy tập nghiệm của pt là S = {-1}

* \(\frac{3}{4}-3x=0\)

\(\frac{3}{4}-\frac{3x.4}{4}=0\)

⇒ 3 - 12x = 0

⇔ 12x = 3

⇔ x = \(\frac{3}{12}=\frac{1}{4}\)

Vậy tập nghiệm của pt là S = \(\left\{\frac{1}{4}\right\}\)

* 3x - 2 = 2x + 3

⇔ 3x - 2x = 3 + 2

⇔ x = 5

Vậy tập nghiệm của pt là S = {5}

* 2(x - 3) = 5(x + 4)

⇔ 2x - 6 = 5x + 20

⇔ 2x - 5x = 20 + 6

⇔ -3x = 26

⇔ x = \(\frac{-26}{3}\)

Vậy tập nghiệm của pt là S = \(\left\{\frac{-26}{3}\right\}\)

10 tháng 4 2020

\(A,5x-25=0\)

\(\Leftrightarrow5x-5^2=0\)

\(\Leftrightarrow5\left(x-1\right)=0\)

\(\Leftrightarrow x-1=0\)

\(\Rightarrow x=1\)

Chúc bạn học tốt !

23 tháng 3 2020

\(a.\left(2x+5\right)\frac{6}{2}=75\\ \Leftrightarrow\left(2x+5\right)3=75\\ \Leftrightarrow6x+15=75\\\Leftrightarrow 6x=75-15\\\Leftrightarrow 6x=60\\ \Leftrightarrow x=10\)

\(b.\frac{x-3}{5}=6-\frac{1-2x}{3}\\ \Leftrightarrow\frac{3\left(x-3\right)}{15}=\frac{6.15}{15}-\frac{5\left(1-2x\right)}{15}\\ \Leftrightarrow3\left(x-3\right)=6.15-5\left(1-2x\right)\\ \Leftrightarrow3x-9=90-5+10x\\ \Leftrightarrow3x-9-90+5-10x=0\\ \Leftrightarrow-7x-94=0\\ \Leftrightarrow-7x=94\\ \Leftrightarrow x=\frac{-94}{7}\)

\(c.\frac{2x}{3}+\frac{2x-1}{6}=\frac{4-x}{3}\\ \Leftrightarrow\frac{2x.2}{6}+\frac{2x-1}{6}=\frac{2\left(4-x\right)}{6}\\ \Leftrightarrow2x.2+2x-1=2\left(4-x\right)\\ \Leftrightarrow4x+2x-1=8-2x\\ \Leftrightarrow4x+2x-1-8+2x=0\\ \Leftrightarrow8x-9=0\\ \Leftrightarrow8x=9\\ \Leftrightarrow x=\frac{9}{8}\)

\(d.\frac{x-1}{2}+\frac{x-1}{4}=\frac{1-x}{3}\\ \Leftrightarrow\frac{6\left(x-1\right)}{12}+\frac{3\left(x-1\right)}{12}=\frac{4\left(1-x\right)}{12}\\ \Leftrightarrow6\left(x-1\right)+3\left(x-1\right)=4\left(1-x\right)\\ \Leftrightarrow6x-6+3x-3=4-4x\\ \Leftrightarrow6x-6+3x-3-4+4x=0\\ \Leftrightarrow13x-13=0\\ \Leftrightarrow13x=13\\ \Leftrightarrow x=1\)

a) ĐKXĐ: \(x\notin\left\{-1;0\right\}\)

Ta có: \(\dfrac{x+3}{x+1}+\dfrac{x-2}{x}=2\)

\(\Leftrightarrow\dfrac{x\left(x+3\right)}{x\left(x+1\right)}+\dfrac{\left(x+1\right)\left(x-2\right)}{x\left(x+1\right)}=\dfrac{2x\left(x+1\right)}{x\left(x+1\right)}\)

Suy ra: \(x^2+3x+x^2-3x+2=2x^2+2x\)

\(\Leftrightarrow2x^2+2-2x^2-2x=0\)

\(\Leftrightarrow-2x+2=0\)

\(\Leftrightarrow-2x=-2\)

hay x=1(nhận)

Vậy: S={1}

b) ĐKXĐ: \(x\notin\left\{-7;\dfrac{3}{2}\right\}\)

Ta có: \(\dfrac{3x-2}{x+7}=\dfrac{6x+1}{2x-3}\)

\(\Leftrightarrow\left(3x-2\right)\left(2x-3\right)=\left(6x+1\right)\left(x+7\right)\)

\(\Leftrightarrow6x^2-9x-4x+6=6x^2+42x+x+7\)

\(\Leftrightarrow6x^2-13x+6-6x^2-43x-7=0\)

\(\Leftrightarrow-56x-1=0\)

\(\Leftrightarrow-56x=1\)

hay \(x=-\dfrac{1}{56}\)(nhận)

Vậy: \(S=\left\{-\dfrac{1}{56}\right\}\)

c) ĐKXĐ: \(x\ne-\dfrac{2}{3}\)

Ta có: \(\dfrac{5}{3x+2}=2x-1\)

\(\Leftrightarrow5=\left(3x+2\right)\left(2x-1\right)\)

\(\Leftrightarrow6x^2-3x+4x-2-5=0\)

\(\Leftrightarrow6x^2+x-7=0\)

\(\Leftrightarrow6x^2-6x+7x-7=0\)

\(\Leftrightarrow6x\left(x-1\right)+7\left(x-1\right)=0\)

\(\Leftrightarrow\left(x-1\right)\left(6x+7\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x-1=0\\6x+7=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=1\\6x=-7\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=1\left(nhận\right)\\x=-\dfrac{7}{6}\left(nhận\right)\end{matrix}\right.\)

Vậy: \(S=\left\{1;-\dfrac{7}{6}\right\}\)

d) ĐKXĐ: \(x\ne\dfrac{2}{7}\)

Ta có: \(\left(2x+3\right)\cdot\left(\dfrac{3x+8}{2-7x}+1\right)=\left(x-5\right)\left(\dfrac{3x+8}{2-7x}+1\right)\)

\(\Leftrightarrow\left(2x+3\right)\cdot\left(\dfrac{3x+8+2-7x}{2-7x}\right)-\left(x-5\right)\left(\dfrac{3x+8+2-7x}{2-7x}\right)=0\)

\(\Leftrightarrow\left(2x+3-x+5\right)\cdot\dfrac{-4x+6}{2-7x}=0\)

\(\Leftrightarrow\left(x+8\right)\cdot\left(-4x+6\right)=0\)(Vì \(2-7x\ne0\forall x\) thỏa mãn ĐKXĐ)

\(\Leftrightarrow\left[{}\begin{matrix}x+8=0\\-4x+6=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=-8\\-4x=-6\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=-8\left(nhận\right)\\x=\dfrac{3}{2}\left(nhận\right)\end{matrix}\right.\)

Vậy: \(S=\left\{-8;\dfrac{3}{2}\right\}\)

15 tháng 1 2019

\(\frac{x+1}{x-2}+\frac{x-1}{x+2}=\frac{2\left(x^2+2\right)}{x^2-4}\left(x\ne\pm2\right)\)

\(\Leftrightarrow\frac{\left(x+1\right)\left(x+2\right)+\left(x-1\right)\left(x-2\right)}{\left(x-2\right)\left(x+2\right)}=\frac{2\left(x^2+2\right)}{x^2-4}\)

\(\Leftrightarrow\frac{2x^2+4}{x^2-4}=\frac{2x^2+4}{x^2-4}\)

Vậy phương trình này có vô số nghiệm x thỏa mãn trừ x khác 2 và -2