Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài làm
a) Ta có:
\(P\left(x\right)=x^5-3x^2+7x^4-9x^3+x^2-\frac{1}{4}x\)
\(P\left(x\right)=x^5-2x^2+7x^4-9x^3-\frac{1}{4}x\)
\(P\left(x\right)=x^5+7x^4-9x^3-2x^2-\frac{1}{4}x\)
\(Q\left(x\right)=5x^4-x^5+x^2-2x^3+3x^2-\frac{1}{4}\)
\(Q\left(x\right)=5x^4-x^5-2x^3+4x^2-\frac{1}{4}\)
\(Q\left(x\right)=-x^5+5x^4-2x^3+4x^2-\frac{1}{4}\)
b) \(P\left(x\right)+Q\left(x\right)=x^5+7x^4-9x^3-2x^2-\frac{1}{4}x-x^5+5x^4-2x^3+4x^2-\frac{1}{4}\)
\(P\left(x\right)+Q\left(x\right)=12x^4-11x^3+2x^2-\frac{1}{4}x-\frac{1}{4}\)
Vậy \(P\left(x\right)+Q\left(x\right)=12x^4-11x^3+2x^2-\frac{1}{4}x-\frac{1}{4}\)
\(P\left(x\right)-Q\left(x\right)=x^5+7x^4-9x^3-2x^2-\frac{1}{4}x+x^5-5x^4+2x^3-4x^2+\frac{1}{4}\)
\(P\left(x\right)-Q\left(x\right)=2x^5-2x^4-7x^3-6x^2-\frac{1}{4}x-\frac{1}{4}\)
Vậy \(P\left(x\right)-Q\left(x\right)=2x^5-2x^4-7x^3-6x^2-\frac{1}{4}x-\frac{1}{4}\)
c) Ta có:
\(P\left(1\right)=1^5+7.1^4-9.1^3-2.1^2-\frac{1}{4}.1\)
\(P\left(1\right)=-\frac{13}{4}\)
Vậy giá trị của biểu thức P = -13/4 khi x = 1
\(Q\left(0\right)=-0^5+5.0^4-2.0^3+4.0^2-\frac{1}{4}\)
\(Q\left(0\right)=-\frac{1}{4}\)
Vậy \(Q\left(0\right)=-\frac{1}{4}\)
chứng minh hộ mình P(x) + Q(x) và P(x) - Q(x) ạ,mình quên ghi ở trên
Lời giải:
a. $3x-5y+1=3.\frac{1}{3}-5.\frac{-1}{5}+1=1+1+1=3$
b.
Với $x=1$ thì $3x^2-2x-5=3.1^2-2.1-5=-4$
Với $x=-1$ thì $3x^2-2x-5=3(-1)^2-2.(-1)-5=0$
Với $x=\frac{5}{3}$ thì $3x^2-2x-5=3(\frac{5}{3})^2-2.\frac{5}{3}-5=0$
c.
$x-2y^2+z^3=4-2.(-1)^2+(-1)^3=1$
d.
$xy-x^2-xy^3=(-1)(-1)-(-1)^2-(-1)(-1)^3=-1$
b, Ta có : \(\frac{2^7x9^2}{3^3x2^5}=\frac{2^52^2x3^23.3}{3.3^2x2^5}=\frac{2^2x3}{x}=12\)
Trả lời:
a, \(\left(3x+y-z\right)-\left(4x-2y+6z\right)=3x+y-z-4x+2y-6z=-x+3y-7z\)
b, \(K=2x\left(-3x+5\right)+3x\left(2x-12\right)+26x=-6x^2+10x+6x^2-36x+26x=0\)
d, \(A=3x^2\left(x-1\right)-\left(3x^2+x\right)=3x^3-3x^2-3x^2-x=3x^3-6x^2+x\)
e, \(B=y\left(2y^2+1\right)-y^2\left(2+2y-y^2\right)=2y^3+y-2y^2-2y^3+y^4=y^4-2y^2+y\)
Ta có 10x . 5y = 20y
=> 10x = (20 : 5)y
=> 10x = 4y
Với x ; y > 0 thì
10x = ...0 ;
4y = ...4 ; ...6 ;
=> Không có x;y thỏa mãn
=> x = y = 0
b) 2x = 4y - 1
=> 2x = 22y - 2
=> x = 2y - 2 (1)
Lại có 27y = 3x + 8
=> 33y = 3x + 8
=> 3y = x + 8
=> x = 3y - 8 (2)
Từ (1) và (2) => 2y - 2 = 3y - 8
=> y = 6
=> x = 10
Vậy x = 10 ; y = 6
1. \(A=x^{15}+3x^{14}+5=x^{14}\left(x+3\right)+5\)
Thay \(x+3=0\)vào đa thức ta được:\(A=x^{14}.0+5=5\)
2. \(B=\left(x^{2007}+3x^{2006}+1\right)^{2007}=\left[x^{2006}\left(x+3\right)+1\right]^{2007}\)
Thay \(x=-3\)vào đa thức ta được: \(B=\left[x^{2006}\left(-3+3\right)+1\right]^{2017}=\left(x^{2006}.0+1\right)^{2017}=1^{2017}=1\)
3. \(C=21x^4+12x^3-3x^2+24x+15=3x\left(7x^3+4x^2-x+8\right)+15\)
Thay \(7x^3+4x^2-x+8=0\)vào đa thức ta được: \(C=3x.0+15=15\)
4. \(D=-16x^5-28x^4+16x^3-20x^2+32x+2007\)
\(=4x\left(-4x^4-7x^3+4x^2-5x+8\right)+2007\)
Thay \(-4x^4-7x^3+4x^2-5x+8=0\)vào đa thức ta được: \(D=4x.0+2007=2007\)
1. \(A=x^{15}+3x^{14}+5\)
\(A=x^{14}\left(x+3\right)+5\)
\(A=x^{14}+5\)
2. \(B=\left(x^{2007}+3x^{2006}+1\right)^{2007}\)
\(B=\left[x^{2006}\left(x+3\right)+1\right]^{2007}\)
\(B=\left[x^{2006}.\left(-3+3\right)+1\right]^{2007}\)
\(B=1^{2007}=1\)
3. \(C=21x^4+12x^3-3x^2+24x+15\)
\(C=3x\left(7x^2+4x^2-x+8+5\right)\)
\(C=3x\left(0+5\right)\)
\(C=15x\)
4. \(D=-16x^5-28x^4+16x^3-20x^2+32+2007\)
\(D=4x\left(-4x^4-7x^3+4x^2-5x+8\right)+2007\)
\(D=4x.0+2007\)
\(D=2007\)
a) A + x2 - 4xy2 + 2xz - 3y2 = 0
=> A = -x2 + 4xy2 - 2xz + 3y2
b) B + 5x2 - 2xy = 6x2 + 9xy - y2
=> B = 6x2 + 9xy - y2 - 5x2 + 2xy= x2 + 11xy - y2
c) 3xy - 4y2 - A = x2 - 7xy + 8y2
=> A = 3xy - 4y2 - x2 + 7xy - 8y2 = -12y2 + 10xy - x2
Trả lời:
a, A + ( x2 - 4xy2 + 2xz - 3y2 ) = 0
=> A = - ( x2 - 4xy2 + 2xz - 3y2 ) = - x2 + 4xy2 - 2xz + 3y2
b, B + ( 5x2 - 2xy ) = 6x2 + 9xy - y2
=> B = 6x2 + 9xy - y2 - ( 5x2 - 2xy ) = 6x2 + 9xy - y2 - 5x2 + 2xy = x2 + 11xy - y2
c, ( 3xy - 4y2 ) - A = x2 - 7xy + 8y2
=> A = 3xy - 4y2 - ( x2 - 7xy + 8y2 ) = 3xy - 4y2 - x2 + 7xy - 8y2 = 10xy - 12y2 - x2
d, B + ( 4x2y + 5y2 - 3xz + z2 ) = x2 + 11xy - y2 + 4x2y + 5y2 - 3xz + z2 = x2 + 11xy + 4y2 + 4x2y - 3xz + z2
Answer:
`5(3x+2)=4x+1`
\(\Leftrightarrow15x+10=4x+1\)
\(\Leftrightarrow15x-4x=1-10\)
\(\Leftrightarrow11x=-9\)
\(\Leftrightarrow x=-\frac{9}{11}\)
\(\left(x-3\right)\left(x+4\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x-3=0\\x+4=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x=3\\x=-4\end{cases}}}\)