Giải các phương trình sau:

a) 5 x...">

K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

23 tháng 3 2020

a)\(2+\frac{3}{x-5}=1\)

\(\Rightarrow\frac{3}{x-5}=-1\)

\(\Rightarrow3=-x+5\)

\(\Leftrightarrow x+3=5\)

\(\Rightarrow x=2\)

18 tháng 1 2017

Nhìn sơ qua thì thấy bài 3, b thay -2 vào x rồi giải bình thường tìm m

18 tháng 1 2017

Bài 2:

a) \(x+x^2=0\)

\(\Leftrightarrow x\left(x+1\right)=0\)

\(\Leftrightarrow\hept{\begin{cases}x=0\\x+1=0\end{cases}}\)\(\Leftrightarrow\hept{\begin{cases}x=0\\x=0-1\end{cases}}\)\(\Leftrightarrow\hept{\begin{cases}x=0\\x=-1\end{cases}}\)

b) \(0x-3=0\)

\(\Leftrightarrow0x=3\)

\(\Rightarrow vonghiem\)

c) \(3y=0\)

\(\Leftrightarrow y=0\)

24 tháng 3 2020

a) 7x - 35 = 0

<=> 7x = 0 + 35

<=> 7x = 35

<=> x = 5

b) 4x - x - 18 = 0

<=> 3x - 18 = 0

<=> 3x = 0 + 18

<=> 3x = 18

<=> x = 5

c) x - 6 = 8 - x

<=> x - 6 + x = 8

<=> 2x - 6 = 8

<=> 2x = 8 + 6

<=> 2x = 14

<=> x = 7

d) 48 - 5x = 39 - 2x

<=> 48 - 5x + 2x = 39

<=> 48 - 3x = 39

<=> -3x = 39 - 48

<=> -3x = -9

<=> x = 3

19 tháng 5 2021

có bị viết nhầm thì thông cảm nha!

25 tháng 3 2020

a, x( x - 1) = x ( x + 2)

<=> x2 - x = x2 + 2x

<=>  x2 - x - x2 - 2x = 0

<=> -3x = 0

<=> x = 0

b, tương tự câu a

c,\(\Leftrightarrow\frac{3x-3}{4}=2-\frac{x-2}{8}\)        

\(\Leftrightarrow\frac{\left(3x-3\right)2}{8}=\frac{16}{8}-\frac{x-2}{8}\)

\(\Leftrightarrow\frac{6x-6}{8}=\frac{16}{8}-\frac{x-2}{8}\)

=> 6x - 6 = 16 - x + 2

<=> 6x + x = 16 + 2 + 6

<=> 7x = 24

<=> x=\(\frac{24}{7}\)

Các câu còn lại làm tương tự

6 tháng 8 2020

a) 2x^2 + 3 = 2x(x + 4) - 7

<=> 2x^2 + 3 = 2x^2 + 8x - 7

<=> 2x^2 - 2x^2 - 8x = - 7 - 3

<=> -8x = -10

<=> x = -10/-8 = 5/4

b) 4x^2 - 12x + 5 = 0

<=> 4x^2 - 2x - 10x + 5 = 0

<=> 2x(2x - 1) - 5(2x - 1) = 0

<=> (2x - 5)(2x - 1) = 0

<=> 2x - 5 = 0 hoặc 2x - 1 = 0

<=> x = 5/2 hoặc x = 1/2

c) |5 - 2x| = 1 - x
<=> \(\hept{\begin{cases}5-2x\text{ nếu }5-2x\ge0\Leftrightarrow x\ge\frac{5}{2}\\-\left(5-2x\right)\text{ nếu }5-2x< 0\Leftrightarrow x< \frac{5}{2}\end{cases}}\)

+) nếu x >= 5/2, ta có:

5 - 2x = 1 - x

<=> -2x + 1 = 1 - 5

<=> -x = -4

<=> x = 4 (tm)

+) nếu x < 5/2, ta có:

-(5 - 2x) = 1 - x

<=> -5 + 2x = 1 - x

<=> 2x + 1 = 1 + 5

<=> 3x = 6

<=> x = 2 (ktm)

d) \(\frac{2}{x-1}=\frac{\left(2x-1\right)\left(2x+1\right)}{x^3-1}-\frac{2x+3}{x^2+x+1}\) ; ĐKXĐ: x # 1 

<=> \(\frac{2}{x-1}=\frac{\left(2x-1\right)\left(2x+1\right)}{\left(x-1\right)\left(x^2+x+1\right)}-\frac{2x+3}{x^2+x+1}\)

<=> \(\frac{2\left(x^2+x+1\right)}{\left(x-1\right)\left(x^2+x+1\right)}=\frac{\left(2x-1\right)\left(2x+1\right)}{\left(x-1\right)\left(x^2+x+1\right)}-\frac{\left(2x+3\right)\left(x-1\right)}{\left(x-1\right)\left(x^2+x+1\right)}\)

<=> 2(x^2 + x + 1) = (2x - 1)(2x + 1) - (2x + 3)(x - 1)

<=> 2x^2 + 2x + 2 = 2x^2 - x + 2

<=> 2x^2 - 2x^2 + 2x - x = 2 - 2

<=> x = 0

8 tháng 8 2020

mạn phép vô đây để kiếm câu trả lời 

\(2x^2+3=2x\left(x+4\right)-7\)

\(< =>2x^2+3=2x.x+4.2x-7\)

\(< =>2x^2+3=2x^2+8x-7\)

\(< =>2x^2+3-2x^2=8x-7\)

\(< =>\left(2x^2-2x^2\right)-8x=-7-3\)

\(< =>-8x=-10< =>8x=10\)

\(< =>x=10:8=\frac{10}{8}=\frac{5}{4}\)