K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

5 tháng 7 2017

a) 4 x 2 - 20 = 0

a = 4; b = 0; c = -20

Δ = b 2  - 4ac = 0 - 4.4(-20) = 320 > 0 ⇒ ∆ = 8 5

Phương trình có hai nghiệm phân biệt:

Đề kiểm tra Toán 9 | Đề thi Toán 9

Vậy tập nghiệm của phương trình là S = { 5 ; - 5 }

20 tháng 5 2019

nãy giải rồi

20 tháng 5 2019

\(\hept{\begin{cases}7x-3y=4\\4x+y=5\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}7x-3y=4\\12x+3y=15\end{cases}}\)

Cộng vế ta được :

\(7x-3y+12x+3y=4+15\)

\(\Leftrightarrow19x=19\)

\(\Leftrightarrow x=1\)

Khi đó : \(7-3y=4\Leftrightarrow y=1\)

Vậy \(x=y=1\)

20 tháng 5 2019

a) \(x^4-9x^2+20=0\)

\(\Leftrightarrow x^4-4x^2-5x^2+20=0\)

\(\Leftrightarrow x^2\left(x^2-4\right)-5\left(x^2-4\right)=0\)

\(\Leftrightarrow\left(x^2-4\right)\left(x^2-5\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}x^2-4=0\\x^2-5=0\end{cases}}\)

\(\Leftrightarrow\orbr{\begin{cases}x\in\left\{\pm2\right\}\\x\in\left\{\pm\sqrt{5}\right\}\end{cases}}\)

Vậy....

20 tháng 5 2019

\(x^4-9x^2+20=0\)

\(\Leftrightarrow x^4-4x^2-5x^2+20=0\)

\(\Leftrightarrow x^2\left(x^2-4\right)-5\left(x^2-4\right)=0\)

\(\Leftrightarrow\left(x^2-5\right)\left(x^2-4\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}x^2-5=0\\x^2-4=0\end{cases}}\Leftrightarrow x\in\left\{\pm2\right\}\)

18 tháng 5 2021

3(2x+y)-2(3x-2y)=3.19-11.2

6x+3y-6x+4y=57-22

7y=35

y=5

thay vào :

2x+y=19

2x+5=19

2x=14

x=7

2/ x2+21x-1x-21=0

x(x+21)-1(x+21)=0

(x+21)(x-1)=0

TH1 x+21=0

x=-21

TH2 x-1=0

x=1

vậy x = {-21} ; {1}

3/ x4-16x2-4x2+64=0

x2(x2-16)-4(x2-16)=0

(x2-16)-(x2-4)=0

TH1 x2-16=0

x2=16

<=>x=4;-4

TH2 x2-4=0

x2=4

x=2;-2

18 tháng 5 2021

Bài 1 : 

\(\hept{\begin{cases}2x+y=19\\3x-2y=11\end{cases}\Leftrightarrow\hept{\begin{cases}4x+2y=38\\3x-2y=11\end{cases}\Leftrightarrow\hept{\begin{cases}7x=49\\2x+y=19\end{cases}}}}\)

\(\Leftrightarrow\hept{\begin{cases}x=7\\2x+y=19\end{cases}}\)Thay vào x = 7 vào pt 2 ta được : 

\(14+y=19\Leftrightarrow y=5\)Vậy hệ pt có một nghiệm ( x ; y ) = ( 7 ; 5 )

Bài 2 : 

\(x^2+20x-21=0\)

\(\Delta=400-4\left(-21\right)=400+84=484\)

\(x_1=\frac{-20-22}{2}=-24;x_2=\frac{-20+22}{2}=1\)

Bài 3 : Đặt \(x^2=t\left(t\ge0\right)\)

\(t^2-20t+64=0\)

\(\Delta=400+4.64=656\)

\(t_1=\frac{20+4\sqrt{41}}{2}\left(tm\right);t_2=\frac{20-4\sqrt{41}}{2}\left(ktm\right)\)

Theo cách đặt : \(x^2=\frac{20+4\sqrt{41}}{2}\Rightarrow x=\sqrt{\frac{20+4\sqrt{41}}{2}}=\frac{\sqrt{20\sqrt{2}+4\sqrt{82}}}{2}\)

29 tháng 7 2017

1)  \(\left|x-1\right|+\left|x-2\right|+\left|x-3\right|+\left|x-4\right|=5x-20\)    (1)

Vì  \(VT\ge0\)  nên  \(5x-20\ge0\)  hay  \(x\ge4\)

Do đó  

\(\left|x-1\right|+\left|x-2\right|+\left|x-3\right|+\left|x-4\right|=x-1+x-2+x-3+x-4=4x-10\)

(1) tương đương với

\(4x-10=5x-20\)  \(\Leftrightarrow x=10\)  (Nhận)

Bài 2) tương tự

22 tháng 5 2024

VT là j vậy bn

 

29 tháng 7 2017

help me pls

2 tháng 8 2017

bỏ x làm tsc
 

21 tháng 10 2018

a) \(pt\Leftrightarrow\left[\left(2x+\frac{3}{2}\right)^2+\frac{7}{4}\right].\left[\left(3y-2\right)^2+16\right]=20\)

\(\Leftrightarrow\left(2x+\frac{3}{2}\right)^2.\left(3y-2\right)^2+16\left(2x+\frac{3}{2}\right)^2+\frac{7}{4}\left(3y-2\right)^2+20=20\)

\(\Leftrightarrow\left(2x+\frac{3}{2}\right)^2.\left(3y-2\right)^2+16\left(2x+\frac{3}{2}\right)^2+\frac{7}{4}\left(3y-2\right)^2=0\)

\(\Leftrightarrow\hept{\begin{cases}2x+\frac{3}{2}=0\\3y-2=0\end{cases}\Leftrightarrow\hept{\begin{cases}x=\frac{-3}{4}\\y=\frac{2}{3}\end{cases}}}\)

b) ĐK: 20-X2>0

\(pt\Leftrightarrow\frac{x^6}{\sqrt{20-x^2}}=20-x^2\)

\(\Leftrightarrow x^6=\left(20-x^2\right)\sqrt{20-x^2}\)

\(\Leftrightarrow x^6=\sqrt{\left(20-x^2\right)^3}\)

\(\Leftrightarrow x^2=\sqrt{20-x^2}\)

\(\Leftrightarrow x^4=20-x^2\)

\(\Leftrightarrow x^4+x^2-20=0\Leftrightarrow\orbr{\begin{cases}x^2=-5\left(loại\right)\\x^2=4\end{cases}}\)

\(\Leftrightarrow x=\pm2\left(tm\right)\)

21 tháng 10 2018

cảm ơn bạn rất nhiều 

x4−3x3−2x2+6x+4=0x4−3x3−2x2+6x+4=0

⇔x4−2x3−2x2−x3+2x2+2x−2x2+4x+4=0⇔x4−2x3−2x2−x3+2x2+2x−2x2+4x+4=0

⇔x2(x2−2x−2)−x(x2−2x−2)−2(x2−2x−2)=0⇔x2(x2−2x−2)−x(x2−2x−2)−2(x2−2x−2)=0

⇔(x2−x−2)(x2−2x−2)=0⇔(x2−x−2)(x2−2x−2)=0

⇔(x+1)(x−2)(x−1−√3)(x−1+√3)=0⇔(x+1)(x−2)(x−1−3)(x−1+3)=0

⇔⎡⎢ ⎢ ⎢ ⎢⎣x=−1x=2x=1+√3x=1−√3

9 tháng 10 2021

tl

x4−3x3−2x2+6x+4=0x4−3x3−2x2+6x+4=0

⇔x4−2x3−2x2−x3+2x2+2x−2x2+4x+4=0⇔x4−2x3−2x2−x3+2x2+2x−2x2+4x+4=0

⇔x2(x2−2x−2)−x(x2−2x−2)−2(x2−2x−2)=0⇔x2(x2−2x−2)−x(x2−2x−2)−2(x2−2x−2)=0

⇔(x2−x−2)(x2−2x−2)=0⇔(x2−x−2)(x2−2x−2)=0

⇔(x+1)(x−2)(x−1−√3)(x−1+√3)=0⇔(x+1)(x−2)(x−1−3)(x−1+3)=0

⇔⎡⎢ ⎢ ⎢ ⎢⎣x=−1x=2x=1+√3x=1−√3

^HT^

4 tháng 4 2017

a) x2 – 8 = 0 ⇔ x2 = 8 ⇔ x = ±√8 ⇔ x = ±2√2

b) 5x2 – 20 = 0 ⇔ 5x2 = 20 ⇔ x2 = 4 ⇔ x = ±2

c) 0,4x2 + 1 = 0 ⇔ 0,4x2 = -1 ⇔ x2 = -: Vô nghiệm

d) 2x2 + √2x = 0 ⇔ x(2x + √2) = 0 ⇔ √2x(√2x + 1) = 0

⇔ x1 = 0 hoặc √2x + 1 = 0

Từ √2x + 1 = 0 => x2 =

Phương trình có 2 nghiệm

x1 = 0, x2 =

e) -0,4x2 + 1,2x = 0 ⇔ -4x2 + 12x = 0 ⇔ -4x(x – 3) = 0

⇔ x1 = 0,

hoặc x2 - 3 = 0 => x2 = 3

Vậy phương trình có 2 nghiệm x1 = 0, x2 = 3