\(\dfrac{x+1}{85}+\dfrac{x+3}{83}=\dfrac{x+5}{81}+\dfrac{x+7}{...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

1: \(\Leftrightarrow\left(\dfrac{x+1}{85}+1\right)+\left(\dfrac{x+3}{83}+1\right)=\left(\dfrac{x+5}{81}+1\right)+\left(\dfrac{x+7}{79}+1\right)\)

=>x+86=0

=>x=-86

2: \(\Leftrightarrow\left(\dfrac{x-1}{2015}+1\right)-\left(\dfrac{x+3}{2011}+1\right)=\left(\dfrac{x+7}{2007}+1\right)-\left(\dfrac{x+11}{2003}+1\right)\)

=>x+2014=0

=>x=-2014

3: \(\Leftrightarrow3\left(x+4\right)-2\left(x-3\right)=4x\)

=>4x=3x+12-2x+6

=>4x=x+18

=>3x=18

=>x=6

4: \(\Leftrightarrow15x-5\left(x+1\right)=3\left(2x+1\right)\)

=>15x-5x-5=6x+3

=>10x-5=6x+3

=>4x=8

=>x=2

5: \(\Leftrightarrow2\left(2x-7\right)+5\left(x+11\right)=-40\)

=>4x-14+5x+55=-40

=>9x+41=-40

=>x=-9

2 tháng 2 2023

em c.ơn nhiều lắm ạ

8 tháng 11 2017

a)Ta có : \(\dfrac{x+1}{1-x}\)( giữ nguyên )

\(\dfrac{x^2-2}{1-x}\)( giữ nguyên )

\(\dfrac{2x^2-x}{x-1}=\dfrac{x-2x^2}{1-x}\)

b)Ta có : \(\dfrac{1}{x-1}=\dfrac{x^2+x+1}{\left(x-1\right)\left(x^2+x+1\right)}=\dfrac{x^2+x+1}{x^3-1}\)

\(\dfrac{2x}{x^2+x+1}=\dfrac{2x\left(x-1\right)}{\left(x-1\right)\left(x^2+x+1\right)}=\dfrac{2x^2-2x}{x^3-1}\)

\(\dfrac{2x-3x^2}{x^3-1}\)(giữ nguyên )

c) MTC = ( x+ 2)2(x - 2)2

Do đó , ta có : \(\dfrac{1}{x^2+4x+4}=\dfrac{1}{\left(x+2\right)^2}=\dfrac{\left(x-2\right)^2}{\left(x+2\right)^2\left(x-2\right)^2}\)

\(\dfrac{1}{x^2-4x+4}=\dfrac{1}{\left(x-2\right)^2}=\dfrac{\left(x+2\right)^2}{\left(x-2\right)^2\left(x+2\right)^2}\)

\(\dfrac{x}{x^2-4}=\dfrac{x}{\left(x+2\right)\left(x-2\right)}=\dfrac{x\left(x^2-2^2\right)}{\left(x+2\right)^2\left(x-2\right)^2}=\dfrac{x^3-4x}{\left(x+2\right)^2\left(x-2\right)^2}\)

8 tháng 11 2017

d) MTC = xyz( x - y)( y - z)( x - z)

Do đó , ta có : \(\dfrac{1}{x\left(x-y\right)\left(x-z\right)}=\dfrac{yz\left(y-z\right)}{xyz\left(x-y\right)\left(y-z\right)\left(x-z\right)}\)

\(\dfrac{1}{y\left(y-x\right)\left(y-z\right)}=\dfrac{-xz\left(x-z\right)}{xyz\left(x-y\right)\left(y-z\right)\left(x-z\right)}\)

\(\dfrac{1}{z\left(z-x\right)\left(z-y\right)}=\dfrac{xy\left(x-y\right)}{xyz\left(x-y\right)\left(y-z\right)\left(x-z\right)}\)

Cộng các phân thức lại ta có :

\(\dfrac{yz\left(y-z\right)}{xyz\left(x-y\right)\left(y-z\right)\left(x-z\right)}\)+\(\dfrac{-xz\left(x-z\right)}{xyz\left(x-y\right)\left(y-z\right)\left(x-z\right)}\)+\(\dfrac{xy\left(x-y\right)}{xyz\left(x-y\right)\left(y-z\right)\left(x-z\right)}\)

= \(\dfrac{yz\left(y-z\right)-xz\left(x-z\right)+xy\left(x-y\right)}{xyz\left(x-y\right)\left(y-z\right)\left(x-z\right)}\)

4 tháng 11 2017

\(\text{a) }\left(\dfrac{1}{2}a^2x^4+\dfrac{4}{3}\:ax^3-\dfrac{2}{3}ax^2\right):\left(-\dfrac{2}{3}\:ax^2\right)\\ =-3ax^2-2x+1\)

\(\text{b) }4\left(\dfrac{3}{4}x-1\right)+\left(12x^2-3x\right):\left(-3x\right)-\left(2x+1\right)\\ =3x-4-4x+1-2x-1\\ =-3x-4\)

4 tháng 11 2017

kết quả cuối cùng là: a. -\(\dfrac{3}{4}ax^2-2x+1\)

b. \(\)-\(3x-4\)

8 tháng 5 2017

Bài 1:

a) \(\dfrac{2x-3}{35}+\dfrac{x\left(x-2\right)}{7}>\dfrac{x^2}{7}-\dfrac{2x-3}{5}\)

{bước 1 là quy đồng bỏ mẫu, bạn chọn mẫu là BCNN của các mẫu số ở tất cả các phân thức trong BPT, phải chọn MC là BCNN vì số càng đơn giản càng dễ tính toán}

\(\Leftrightarrow2x-3+5x^2-10x>5x^2-14x+21\)

{chuyển vế}

\(\Leftrightarrow2x-10x+14x>21+3\) \(\Leftrightarrow6x>24\)

{chia cả 2 vế của bpt cho 6}

\(\Leftrightarrow x>4\)

Vậy nghiệm của BẤT phương trình là x>4

{bạn chú ý là bất phương trình chứ KHÔNG PHẢI là nghiệm của phương trình nhé}

cũng có thể kết luận thế này: Vậy S={x|x>4}

hay biểu diễn trên trục số (nếu đề yêu cầu)

{khi đã biểu diễn trên trục số thì bạn không cần phải kết luận như 2 cách trên nữa nhé, dư đấy.}

8 tháng 5 2017

1b)

\(\dfrac{6x+1}{18}+\dfrac{x+3}{12}\le\dfrac{5x+3}{6}+\dfrac{12-5x}{9}\)

{tương tự: quy đồng bỏ mẫu}

\(\Leftrightarrow12x+2+3x+9\le30x+18+48-20x\)

{chuyển vế các hạng tử}

\(\Leftrightarrow15x-10x\le66-11\)\(\Leftrightarrow5x\le55\)

{chia cả 2 vế cho 5}

\(\Leftrightarrow x\le11\)

Vậy \(x\le11\)

(cách kết luận như câu a, nói rồi không nói lại nhé ^^!)

20 tháng 3 2017

a) 3x+2(x-5)=-x+2

<=> 3x+2x+x=2+10

<=>6x=12

<=>x=2

b) 3x2-2x=0

<=>x(3x-2)=0

<=>\(\left[{}\begin{matrix}x=0\\3x-2=0\end{matrix}\right.\)

<=>\(\left[{}\begin{matrix}x=0\\x=\dfrac{2}{3}\end{matrix}\right.\)

c) \(\dfrac{2x}{3}\)+\(\dfrac{x-4}{6}\)=2-\(\dfrac{x}{2}\)

<=>\(\dfrac{8x+2x-8}{12}\)=\(\dfrac{24-6x}{12}\)

<=> 8x+2x-8=24-6x

<=>8x+2x+6x=24+8

<=>16x=32

<=>x=2

d) \(\dfrac{x-2}{x+2}\)-\(\dfrac{3}{x-2}\)= -\(\dfrac{2\left(x-11\right)}{4-x^2}\) ( ĐKXĐ: x\(\ne\)\(\pm\)2)

<=> \(\dfrac{\left(x-2\right)^2-3\left(x+2\right)}{x^2-4}\)=\(\dfrac{2\left(x-11\right)}{x^2-4}\)

=> (x-2)2-3(x+2)=2(x-11)

<=> x2-4x+4-3x-6=2x-22

<=> x2-4x-3x-2x=-22-4+6

<=> x-9x+20=0

<=> (x-4)(x-5)=0

<=>\(\left[{}\begin{matrix}x=4\\x=5\end{matrix}\right.\) ( thỏa mãn diều kiện )

d) (x2+1)(x2-4x+4)=0

=> x2-4x+4=0 (x2+1\(\ge\)1 với mọi x)

=>(x-2)2 =0

=>x=2

20 tháng 3 2017

Cảm ơn bạn nhăn Ngọc Vô Tâm

16 tháng 9 2017

a,(5x-2y)(x2-xy+1)=5x3-5x2+5x-2yx2+2xy2-2y

=5x3-7x2y+2xy2+5x-2y

b,(x-2)(x+2)(\(\dfrac{1}{2}\) x-5)=x2-4.\(\left(\dfrac{1}{2}x-5\right)\)

=\(\dfrac{1}{2}x^3-5x^2-2x+20\)

16 tháng 9 2017

c,\(\left(x^2-2x+3\right)\left(\dfrac{1}{2}x-5\right)\)

=\(\dfrac{1}{2}x^3-5x^2-1x^2+10x+\dfrac{3}{2}x-15\)

=\(\dfrac{1}{2}x^3-6x^2+\dfrac{23}{2}x-15\)

d,\(\left(x^2-5\right)\left(x+3\right)+\left(x+4\right)\left(x-x^2\right)\)

=\(x^3+3x^2-5x-15+x^2-x^3+4x-4x^2\)

=\(-5x+4x-15\)

=\(-x-15\)

Chúc bạn học tốt(mỏi tay quá)

22 tháng 4 2017

\(\Leftrightarrow A=\left(\dfrac{x}{x+2}+\dfrac{\left(x-2\right)\left(x^2+2x+4\right)}{\left(x+2\right)\left(x^2-2x+4\right)}.\dfrac{\left(x-2\right)^2}{-\left(x-2\right)\left(x+2\right)}\right):\dfrac{4}{x+2}\)

\(\Leftrightarrow A=\left(\dfrac{x}{x+2}-\dfrac{\left(x-2\right)\left(x+2\right)^2}{\left(x+2\right)\left(x-2\right)^2}.\dfrac{-\left(x-2\right)}{\left(x+2\right)}\right):\dfrac{4}{x+2}\)

\(\Leftrightarrow A=\left(\dfrac{x}{x+2}-1\right):\dfrac{4}{x+2}\)

\(\Leftrightarrow A=\dfrac{2}{x+2}:\dfrac{4}{x+2}\)

\(\Leftrightarrow A=\dfrac{1}{2}\)

26 tháng 5 2017

\(A=\left(\dfrac{x}{x+2}+\dfrac{x^3-8}{x^3+8}.\dfrac{x^2-2x+4}{4-x^2}\right):\dfrac{4}{x+2}=\left(\dfrac{x}{x+2}+\dfrac{\left(x-2\right)\left(x^2+2x+4\right)}{\left(x+2\right)\left(x^2-2x+4\right)}.\dfrac{x^2-2x+4}{-\left(x-2\right)\left(2+x\right)}\right).\dfrac{x+2}{4}=\left(\dfrac{x\left(x+2\right)}{\left(x+2\right)^2}-\dfrac{\left(x^2+2x+4\right)}{\left(x+2\right)^2}\right).\dfrac{x+2}{4}=\left(\dfrac{x^2+2x-x^2-2x-4}{\left(x+2\right)^2}\right).\dfrac{x+2}{4}=\dfrac{-4}{\left(x+2\right)^2}.\dfrac{x+2}{4}=-\dfrac{1}{x+2}\)

12 tháng 3 2017

Theo bài ra , ta có :

\(\dfrac{x+5}{25}+1+\dfrac{x+6}{24}+1+\dfrac{x+7}{23}=0\)

\(\Leftrightarrow\dfrac{x+5+25}{25}+\dfrac{x+6+24}{24}+\dfrac{x+7+23}{23}=0\)

\(\Leftrightarrow\dfrac{x+30}{25}+\dfrac{x+30}{24}+\dfrac{x+30}{23}=0\)

\(\Leftrightarrow\left(x+30\right)\left(\dfrac{1}{25}+\dfrac{1}{24}+\dfrac{1}{23}\right)=0\)

\(\dfrac{1}{25}+\dfrac{1}{24}+\dfrac{1}{23}\ne0\)

\(\Leftrightarrow x+30=0\)

\(\Leftrightarrow x=-30\)

Vậy S={-30}

Chúc bạn học tốt =))ok

12 tháng 3 2017

Ta có :

\(\dfrac{x+5}{25}+\dfrac{x+6}{24}+\dfrac{x+7}{23}=-3\)

=> \(\left(x+5\right).\dfrac{1}{25}+\left(x+5+1\right).\dfrac{1}{24}+\left(x+5+2\right).\dfrac{1}{23}=-3\)

=>\(\left(x+5\right).\dfrac{1}{25}+\left(x+5\right).\dfrac{1}{24}+\dfrac{1}{24}+\left(x+5\right).\dfrac{1}{23}+2.\dfrac{1}{23}\)= -3

=> (x + 5).\(\left(\dfrac{1}{25}+\dfrac{1}{24}+\dfrac{1}{23}\right)\) + \(\dfrac{1}{24}+\dfrac{2}{23}\) = -3

=> (x + 5). \(\dfrac{1727}{13800}\) + \(\dfrac{71}{552}\) = -3

=> (x + 5). \(\dfrac{1727}{13800}\) = -3 - \(\dfrac{71}{552}\)

=> (x + 5). \(\dfrac{1727}{13800}\) = \(\dfrac{-1727}{552}\)

=> x + 5 = -25

=> x = -25-5

=> x = -30

Vậy x = -30

14 tháng 6 2017

Ta có :

\(VT=\left(\dfrac{1}{2}xy-\dfrac{1}{3}y\right)\left(\dfrac{1}{4}x^2y^2+\dfrac{1}{6}xy^2+\dfrac{1}{9}y^2\right)\)

\(=\dfrac{1}{8}x^3y^3+\dfrac{1}{12}x^2y^3+\dfrac{1}{18}xy^3-\dfrac{1}{12}x^2y^3-\dfrac{1}{18}xy^3-\dfrac{1}{27}y^3\)

\(=\dfrac{1}{8}x^3y^3-\dfrac{1}{27}y^3=VT\)

\(\Rightarrow dpcm\)

Vậy : ..............