\(\left(x^2+4x+8\right)^2+3x\left(x^2+4x+8\right)+2x^2=0\)...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

26 tháng 1 2018

a) \(\left(x^2+4x+8\right)^2+3x\left(x^2+4x+8\right)+2x^2=0\)

\(\Rightarrow\left(x^2+4x+8\right)^2+2.\dfrac{3}{2}x\left(x^2+4x+8\right)+\dfrac{9}{4}x^2-\dfrac{1}{4}x^2=0\)

\(\Rightarrow\left(x^2+4x+8+\dfrac{3}{2}x\right)^2-\left(\dfrac{1}{2}x\right)^2=0\)

\(\Rightarrow\left(x^2+4x+8+\dfrac{3}{2}x-\dfrac{1}{2}x\right)\left(x^2+4x+8+\dfrac{3}{2}x+\dfrac{1}{2}x\right)=0\)

\(\Rightarrow\left(x^2+4x+8+x\right)\left(x^2+4x+8+2x\right)=0\)

\(\Rightarrow\left(x^2+5x+8\right)\left(x^2+6x+8\right)=0\)

\(\Rightarrow\left(x^2+5x+8\right)\left(x^2+2x+4x+8\right)=0\)

\(\Rightarrow\left(x^2+5x+8\right)\left[x\left(x+2\right)+4\left(x+2\right)\right]=0\)

\(\Rightarrow\left(x^2+5x+8\right)\left(x+2\right)\left(x+4\right)=0\)

Vì x2 ≥ 0 với mọi x

⇒ x2 + 5x + 8 ≥ 0 với mọi x

\(\Rightarrow\left(x+2\right)\left(x+4\right)=0\)

\(\Rightarrow\left[{}\begin{matrix}x+2=0\\x+4=0\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=-2\\x=-4\end{matrix}\right.\)

26 tháng 1 2018

b) \(\dfrac{x-5}{2017}+\dfrac{x-2}{2020}=\dfrac{x-6}{2016}+\dfrac{x-68}{1954}\)

Trừ 2 vào mỗi vế ta có:

\(\Rightarrow\dfrac{x-5}{2017}-1+\dfrac{x-2}{2020}-1=\dfrac{x-6}{2016}-1+\dfrac{x-68}{1954}-1\)

\(\Rightarrow\dfrac{x-2022}{2017}+\dfrac{x-2022}{2020}-\dfrac{x-2022}{2016}-\dfrac{x-2022}{1954}=0\)

\(\Rightarrow\left(x-2022\right)\left(\dfrac{1}{2017}+\dfrac{1}{2020}-\dfrac{1}{2016}-\dfrac{1}{1954}\right)=0\)

Ta thấy \(\dfrac{1}{2017}+\dfrac{1}{2020}-\dfrac{1}{2016}-\dfrac{1}{1954}\ne0\)

\(\Rightarrow x-2022=0\Rightarrow x=2022\)

Chúc bạn học tốt!

30 tháng 1 2018

b)       \(\frac{x-5}{2017}+\frac{x-2}{2020}=\frac{x-6}{2016}+\frac{x-68}{1954}\)

\(\Leftrightarrow\)\(\frac{x-5}{2017}-1+\frac{x-2}{2020}-1=\frac{x-6}{2016}-1+\frac{x-68}{1954}-1\)

\(\Leftrightarrow\)\(\frac{x-2022}{2017}+\frac{x-2022}{2020}=\frac{x-2022}{2016}+\frac{x-2022}{1954}\)

\(\Leftrightarrow\)\(\left(x-2022\right)\left(\frac{1}{2017}+\frac{1}{2020}-\frac{1}{2016}-\frac{1}{1954}\right)=0\)

\(\Leftrightarrow\)\(x-2022=0\)     (vì 1/2017 + 1/2020 - 1/2016 - 1/1954  \(\ne0\))

\(\Leftrightarrow\)\(x=2022\)

Vậy...

30 tháng 1 2018

b)       \(\frac{x-5}{2017}+\frac{x-2}{2020}=\frac{x-6}{2016}+\frac{x-68}{1954}\)

\(\Leftrightarrow\)\(\frac{x-5}{2017}-1+\frac{x-2}{2020}-1=\frac{x-6}{2016}-1+\frac{x-68}{1954}-1\)

\(\Leftrightarrow\)\(\frac{x-2022}{2017}+\frac{x-2022}{2020}=\frac{x-2022}{2016}+\frac{x-2022}{1954}\)

\(\Leftrightarrow\)\(\left(x-2022\right)\left(\frac{1}{2017}+\frac{1}{2020}-\frac{1}{2016}-\frac{1}{1954}\right)=0\)

\(\Leftrightarrow\)\(x-2022=0\)     (vì 1/2017 + 1/2020 - 1/2016 - 1/1954  \(\ne0\))

\(\Leftrightarrow\)\(x=2022\)

Vậy,....

6 tháng 2 2018

1) điều kiện xác định : \(x\notin\left\{-1;-2;-3;-4\right\}\)

ta có : \(\dfrac{1}{x^2+3x+2}+\dfrac{1}{x^2+5x+6}+\dfrac{1}{x^2+7x+12}=\dfrac{1}{6}\)

\(\Leftrightarrow\dfrac{1}{\left(x+1\right)\left(x+2\right)}+\dfrac{1}{\left(x+2\right)\left(x+3\right)}+\dfrac{1}{\left(x+3\right)\left(x+4\right)}=\dfrac{1}{6}\) \(\Leftrightarrow\dfrac{\left(x+3\right)\left(x+4\right)+\left(x+1\right)\left(x+4\right)+\left(x+1\right)\left(x+2\right)}{\left(x+1\right)\left(x+2\right)\left(x+3\right)\left(x+4\right)}=\dfrac{1}{6}\)

\(\Leftrightarrow\dfrac{x^2+7x+12+x^2+5x+4+x^2+3x+2}{\left(x+1\right)\left(x+2\right)\left(x+3\right)\left(x+4\right)}=\dfrac{1}{6}\)

\(\Leftrightarrow\dfrac{3x^2+15x+18}{\left(x+1\right)\left(x+2\right)\left(x+3\right)\left(x+4\right)}=\dfrac{1}{6}\)

\(\Leftrightarrow6\left(3x^2+15x+18\right)=\left(x+1\right)\left(x+2\right)\left(x+3\right)\left(x+4\right)\)

\(\Leftrightarrow18\left(x^2+5x+6\right)=\left(x+1\right)\left(x+2\right)\left(x+3\right)\left(x+4\right)\)

\(\Leftrightarrow18\left(x+2\right)\left(x+3\right)=\left(x+1\right)\left(x+2\right)\left(x+3\right)\left(x+4\right)\)

\(\Leftrightarrow18=\left(x+1\right)\left(x+4\right)\) ( vì điều kiện xác định )

\(\Leftrightarrow18=x^2+5x+4\Leftrightarrow x^2+5x-14=0\)

\(\Leftrightarrow\left(x-2\right)\left(x+7\right)=0\Leftrightarrow\left[{}\begin{matrix}x-2=0\\x+7=0\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}x=2\\x=-7\end{matrix}\right.\left(tmđk\right)\)

vậy \(x=2\) hoặc \(x=-7\) mấy câu kia lm tương tự nha bn

21 tháng 12 2018

GIÚP MÌNH VỚI MAI LÀ NỘP BÀI RỒI

23 tháng 12 2018

câu a) và b) thì sử dụng tính chất nếu tích =0 thì có ít nhất 1 thừa số =0

c)4x^2+4x+1=0

(2x+1)^2=0

2x+1=0

x=-1/2

6 tháng 5 2018

a/ ĐKXĐ: x khác 1; x khác - 2

pt <=> \(\dfrac{x-1}{\left(x+2\right)\left(x-1\right)}-\dfrac{2\left(x+2\right)}{\left(x+2\right)\left(x-1\right)}=\dfrac{4x-8}{\left(x+2\right)\left(x-1\right)}\)

\(\Leftrightarrow x-1-2x-4=4x-8\Leftrightarrow-5x=-3\Leftrightarrow x=\dfrac{3}{5}\left(tm\right)\)

Vậy........

b/ \(2x-3\ge5\Leftrightarrow2x\ge8\Leftrightarrow x\ge4\)

Vậy......

c,d tt

6 tháng 5 2018

a. \(\dfrac{1}{x+2}-\dfrac{2}{x-1}=\dfrac{4x-8}{\left(x+2\right)\left(x-1\right)}\)

ĐKXĐ: \(x\ne-2;x\ne1\)

\(\Leftrightarrow\dfrac{1\left(x-1\right)}{x+2\left(x-1\right)}-\dfrac{2\left(x+2\right)}{x-1\left(x+2\right)}=\dfrac{4x-8}{\left(x+2\right)\left(x-1\right)}\)

\(\Rightarrow1\left(x-1\right)-2\left(x+2\right)=4x-8\)

\(\Leftrightarrow x-1-2x-4=4x-8\)

\(\Leftrightarrow x-2x-4x=-8+1+4\)

\(\Leftrightarrow-5x=-3\)

\(\Leftrightarrow x=\dfrac{3}{5}\)

Vậy \(S=\left\{\dfrac{3}{5}\right\}\)

b) \(2x-3\ge5\left(2\right)\)

\(\Leftrightarrow2x\ge8\)

\(\Leftrightarrow x\ge4\)

Vậy tập nghiệm của BPT (2) là \(x\ge4\)

c) \(\dfrac{2}{x+1}-\dfrac{1}{x-2}=\dfrac{2x-6}{\left(x+1\right)\left(x-2\right)}\)

ĐKXĐ: \(x\ne2;x\ne-1\)

\(\Leftrightarrow\dfrac{2\left(x-2\right)}{x+1\left(x-2\right)}-\dfrac{1\left(x+1\right)}{x-2\left(x+1\right)}=\dfrac{2x-6}{\left(x+1\right)\left(x-2\right)}\)

\(\Rightarrow2x-3-1-x=2x-6\)

\(\Leftrightarrow2x-x-2x=-6+3+1\)

\(\Leftrightarrow x=2\) (KTM)

Vậy pt vô \(n_o\)

d) \(3x-5\ge7\left(4\right)\)

\(\Leftrightarrow3x\ge12\)

\(\Leftrightarrow x\ge4\)

Vậy tập nghiệm của BPT (4) là \(x\ge4\)

22 tháng 4 2017

Giải bài 52 trang 33 SGK Toán 8 Tập 2 | Giải toán lớp 8

Giải bài 52 trang 33 SGK Toán 8 Tập 2 | Giải toán lớp 8

30 tháng 4 2018

a) 4x -8 ≥ 3(3x-1)-2x +1

⇒4x -8 ≥7x -2

⇒4x -7x ≥ -2 +8

⇒-3x ≥ 6

⇒x≤-2

Vậy bpt có nghiệm là:{x|x≤-2}

30 tháng 4 2018

b) (x-3)(x+2)+(x+4)2≤ 2x (x+5)+4

⇔ x2+2x - 3x - 6 +x2 + 8x +16≤ 2x2 + 10x +4

⇔ x2 +2x - 3x + x2 + 8x - 2x2- 10x ≤ 4+6-16

⇔ -3x ≤ -6

⇔ x≥ 2

Vậy bpt có tập nghiệm là: {x|x≥2}

14 tháng 1 2019

a. \(\dfrac{6x+5}{2}-\dfrac{10x+3}{4}=2x+\dfrac{2x+1}{2}\)

\(\Leftrightarrow2\left(6x+5\right)-10x-3=8x+2\left(2x+1\right)\)

\(\Leftrightarrow12x+10-10x-3=8x+4x+2\)

\(\Leftrightarrow12x-10x-8x-4x=2-10+3\)

\(\Leftrightarrow-10x=-5\Leftrightarrow x=\dfrac{1}{2}\)

b. \(\left(x+1\right)^3-\left(x-1\right)^3=6\left(x^2+x+1\right)\)

\(\Leftrightarrow x^3+3x^2+3x+1-x^3+3x^2-3x+1=6x^2+6x+6\)

\(\Leftrightarrow6x^2+2=6x^2+6x+6\)

\(\Leftrightarrow6x^2-6x^2-6x=6-2\Leftrightarrow-6x=4\)

\(\Leftrightarrow x=\dfrac{-2}{3}\)

c. \(\dfrac{x+2}{13}+\dfrac{2x+45}{15}=\dfrac{3x+8}{37}+\dfrac{4x+69}{9}\)

\(\Leftrightarrow\left(\dfrac{x+2}{13}+1\right)+\left(\dfrac{2x+45}{15}-1\right)=\left(\dfrac{3x+8}{37}+1\right)+\left(\dfrac{4x+69}{9}-1\right)\)

\(\Leftrightarrow\dfrac{x+15}{13}+\dfrac{2\left(x+15\right)}{15}-\dfrac{3\left(x+15\right)}{37}-\dfrac{4\left(x+15\right)}{9}=0\)

\(\Leftrightarrow\left(x+15\right)\left(\dfrac{1}{13}+\dfrac{2}{15}-\dfrac{3}{37}-\dfrac{4}{9}\right)=0\)

\(\left(\dfrac{1}{13}+\dfrac{2}{15}-\dfrac{3}{37}-\dfrac{4}{9}\right)>0\)

\(\Leftrightarrow x+15=0\Leftrightarrow x=-15\)