\(\left(\tan x+\cot x\right)^2-\left(\tan x+\cot x\right)=2\)
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

6 tháng 12 2016

mai đăng lại bài này nhé t làm cho h đi ngủ

6 tháng 12 2016

NV
16 tháng 9 2020

b.

ĐKXĐ: ...

\(\Leftrightarrow\frac{\pi}{3}cot\pi x=\frac{\pi}{6}+k\pi\)

\(\Leftrightarrow cot\pi x=\frac{1}{2}+3k\)

\(\Leftrightarrow\pi x=arccot\left(\frac{1}{2}+3k\right)+n\pi\)

\(\Leftrightarrow x=\frac{1}{\pi}arccot\left(\frac{1}{2}+3k\right)+n\)

c.

\(\Leftrightarrow\left[{}\begin{matrix}\pi tan3x=\frac{\pi}{6}+k2\pi\\\pi tan3x=\frac{5\pi}{6}+k2\pi\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}tan3x=\frac{1}{6}+2k\\tan3x=\frac{5}{6}+2k\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=\frac{1}{3}arctan\left(\frac{1}{6}+2k\right)+\frac{n2\pi}{3}\\x=\frac{1}{3}arctan\left(\frac{5}{6}+2k\right)+\frac{n2\pi}{3}\end{matrix}\right.\)

NV
16 tháng 9 2020

a/

\(\Leftrightarrow\frac{\pi}{2}sin\pi\left(x+1\right)=\frac{\pi}{4}+k\pi\)

\(\Leftrightarrow sin\pi\left(x+1\right)=\frac{1}{2}+2k\)

Do \(-1\le sin\pi\left(x+1\right)\le1\Rightarrow k=0\)

\(\Rightarrow sin\pi\left(x+1\right)=\frac{1}{2}\)

\(\Leftrightarrow\left[{}\begin{matrix}\pi\left(x+1\right)=\frac{\pi}{6}+k2\pi\\\pi\left(x+1\right)=\frac{5\pi}{6}+k2\pi\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x+1=\frac{1}{6}+2k\\x+1=\frac{5}{6}+2k\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=-\frac{5}{6}+2k\\x=-\frac{1}{6}+2k\end{matrix}\right.\)

21 tháng 9 2019

\(PT\Leftrightarrow2+\frac{1}{sinxcosx}-cotx=-2-sinx-cosxcotx-tanx\)

\(\Leftrightarrow\frac{1}{sinxcosx}-\frac{cosx}{sinx}=-2sinx-\frac{sinx}{cosx}\)

\(\Leftrightarrow1-cos^2x+2sin^2xcosx+sin^2x=0\)

\(\Leftrightarrow2sin^2x+2sin^2xcosx=0\)

\(\Leftrightarrow2sin^2x\left(1+cosx\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}sin^2x=0\\cosx=-1\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}cosx=1\\cosx=-1\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=2k\pi\\x=\pi+2k\pi\end{matrix}\right.\Leftrightarrow x=k\pi\)

22 tháng 9 2019

Mình sửa lại câu trả lời

ĐK:\(\left\{{}\begin{matrix}sinx\ne0\\cosx\ne0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x\ne k\pi\\x\ne\frac{\pi}{2}+k\pi\end{matrix}\right.\)

\(PT\Leftrightarrow2sin^2x\left(1+cosx\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}sinx=0\left(loai\right)\\cosx=-1\end{matrix}\right.\)

\(\Leftrightarrow x=\pi+2k\pi\left(loai\right)\)

Vậy phương trình vô nghiệm

NV
3 tháng 10 2019

ĐKXĐ: ....

Bạn học cách đặt ẩn phụ \(t=tan\frac{x}{2}\) chưa nhỉ? Rồi thì bài này ngắn, còn chưa thì hơi dài, để an toàn cứ coi như chưa học đi:

Ta có: \(tan\frac{x}{2}=\frac{sin\frac{x}{2}}{cos\frac{x}{2}}=\frac{2sin\frac{x}{2}.cos\frac{x}{2}}{2cos^2\frac{x}{2}}=\frac{sinx}{cosx+1}\)

Thay vào pt:

\(cotx+sinx\left(1+\frac{sin^2x}{cosx\left(1+cosx\right)}\right)=4\)

\(\Leftrightarrow cotx+sinx\left(\frac{cosx+cos^2x+sin^2x}{cosx\left(1+cosx\right)}\right)-4=0\)

\(\Leftrightarrow cotx+\frac{sinx}{cosx}-4=0\)

\(\Leftrightarrow\frac{1}{tanx}+tanx-4=0\)

Đặt \(t=tanx\Rightarrow t^2-4t+1=0\Rightarrow\left[{}\begin{matrix}t=2+\sqrt{3}\\t=2-\sqrt{3}\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}tanx=2+\sqrt{3}=tan\left(\frac{5\pi}{12}\right)\\tanx=2-\sqrt{3}=tan\left(\frac{\pi}{12}\right)\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}x=\frac{\pi}{12}+k\pi\\x=\frac{5\pi}{12}+k\pi\end{matrix}\right.\)

3 tháng 4 2017

a) Ta có:

sin(x+1)=23⇔[x+1=arcsin23+k2πx+1=π−arcsin23+k2π⇔[x=−1+arcsin23+k2πx=−1+π−arcsin23+k2π;k∈Zsin⁡(x+1)=23⇔[x+1=arcsin⁡23+k2πx+1=π−arcsin⁡23+k2π⇔[x=−1+arcsin⁡23+k2πx=−1+π−arcsin⁡23+k2π;k∈Z

b) Ta có:

sin22x=12⇔1−cos4x2=12⇔cos4x=0⇔4x=π2+kπ⇔x=π8+kπ4,k∈Zsin22x=12⇔1−cos⁡4x2=12⇔cos⁡4x=0⇔4x=π2+kπ⇔x=π8+kπ4,k∈Z

c) Ta có:

cot2x2=13⇔⎡⎢⎣cotx2=√33(1)cotx2=−√33(2)(1)⇔cotx2=cotπ3⇔x2=π3+kπ⇔x=2π3+k2π,k∈z(2)⇔cotx2=cot(−π3)⇔x2=−π3+kπ⇔x=−2π3+k2π;k∈Zcot2x2=13⇔[cot⁡x2=33(1)cot⁡x2=−33(2)(1)⇔cot⁡x2=cot⁡π3⇔x2=π3+kπ⇔x=2π3+k2π,k∈z(2)⇔cot⁡x2=cot⁡(−π3)⇔x2=−π3+kπ⇔x=−2π3+k2π;k∈Z

d) Ta có:

tan(π12+12x)=−√3⇔tan(π12+12π)=tan(−π3)⇔π12+12=−π3+kπ⇔x=−5π144+kπ12,k∈Z

Vậy nghiệm của phương trình đã cho là: x=−5π144+kπ12,k∈Z


22 tháng 5 2017

a)
\(sin\left(x+1\right)=\dfrac{2}{3}\Leftrightarrow\left[{}\begin{matrix}x+1=arcsin\dfrac{2}{3}+k2\pi\\x+1=\pi-arcsin\dfrac{2}{3}+k2\pi\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=arcsin\dfrac{2}{3}-1+k2\pi\\x=\pi-arcsin\dfrac{2}{3}-1+k2\pi\end{matrix}\right.\)\(\left(k\in Z\right)\).

29 tháng 3 2020

Bài 1:

ĐK : sinx cosx > 0

Khi đó phương trình trở thành

sinx+cosx=\(2\sqrt{\sin x\cos x}\)

ĐK sinx + cosx >0 → sinx>0 ; cosx>0

Khi đó \(2\sqrt{\sin x\cos x}\Leftrightarrow2\sin x=1\Leftrightarrow x=\frac{\pi}{4}+k\pi\)

Vậy ...

29 tháng 3 2020

Bài 2:

ĐK : \(\sin\left(3x+\frac{\pi}{4}\right)\ge0\)

Khi đó phương trình đã cho tương đương với phương trình \(\sin2x=\frac{1}{2}\)

\(\Leftrightarrow\left\{{}\begin{matrix}x=\frac{\pi}{12}+k\pi\\x=\frac{5\pi}{12}+k\pi\end{matrix}\right.\)

Trong khoảng từ \(\left(-\pi,\pi\right)\) ta nhận được các giá trị :

\(x=\frac{\pi}{12}\) (TMĐK)

\(x=-\frac{11\pi}{12}\) (KTMĐK)

\(x=\frac{5\pi}{12}\) (KTMĐK)

\(x=-\frac{7\pi}{12}\) (TMĐK)

Vậy ta có 2 nghiệm thõa mãn \(x=\frac{\pi}{12}\)\(x=-\frac{7\pi}{12}\)