\(a,\left(x^2-5x\right)^2+10\left(x^2-5x\right)+24=0\)

...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

3 tháng 5 2019

a, Đặt \(x^2-5x=a\)

\(\Rightarrow\)\(a^2+10a+24=0\)

\(\Rightarrow a^2+4a+6a+24=0\)

\(\Rightarrow\left(a+4\right)\left(a+6\right)=0\)

\(\Rightarrow\orbr{\begin{cases}a+4=0\\a+6=0\end{cases}\Rightarrow\orbr{\begin{cases}x^2-5x+4=0\left(1\right)\\x^2-5x+6=0\left(2\right)\end{cases}}}\)

Giải pt (1) ta có : \(x^2-5x+4=0\)

\(\Rightarrow x^2-4x-x+4=0\)

\(\Rightarrow\left(x-4\right)\left(x-1\right)=0\)

\(\Rightarrow\orbr{\begin{cases}x=1\\x=4\end{cases}}\)

Giải pt (2) ta có : \(x^2-5x+6=0\)

\(\Rightarrow x^2-2x-3x+6=0\)

\(\Rightarrow\left(x-2\right)\left(x-3\right)=0\)

\(\Rightarrow\orbr{\begin{cases}x=2\\x=3\end{cases}}\)

Vậy \(S=\left\{1;2;3;4\right\}\)

3 tháng 5 2019

\(x^4-30x^2+31x-30=0\)

\(\Rightarrow x^4-30x^2+x+30x-30=0\)

\(\Rightarrow\left(x^4+x\right)-\left(30x^2-30x+30\right)=0\)

\(\Rightarrow x\left(x^3+1\right)-30\left(x^2-x+1\right)\)

\(\Rightarrow x\left(x+1\right)\left(x^2-x+1\right)-30\left(x^2-x+1\right)\)

\(\Rightarrow\left(x^2-x+1\right)\left(x^2+x-30\right)=0\)

Mà \(x^2-x+1>0\)với \(\forall\)\(x\)

\(\Rightarrow x^2+x-30=0\)

\(\Rightarrow x^2-5x+6x-30=0\)

\(\Rightarrow x\left(x-5\right)+6\left(x-5\right)=0\)

\(\Rightarrow\left(x-5\right)\left(x+6\right)=0\)

\(\Rightarrow\orbr{\begin{cases}x=5\\x=-6\end{cases}}\)

Vậy \(S=\left\{5;-6\right\}\)

24 tháng 1 2018

a) đặt \(\left(x^2+x\right)\)là \(y\)

ta có: \(3y^2-7y+4\)\(=0\)

<=>\(\left(3y-4\right)\left(y-1\right)=0\)

còn lại bạn tự xử nhé 

5 tháng 6 2020

Bài làm
~ Bạn Thủy bên dưới có vẻ bị Lag mạnh, bài dễ như này mà cũng dùng denta với đen tiếc. Đéo biết làm thì đừng làm chứ đéo phải làm cái kiểu mà lớp 8 chưa học nhé bạn >.<, câu c dòng thứ hai với dòng thứ 3 không phải là thừa sao? đã vậy câu c làm sai đề nữa, bên trên là 1 - 5x. bên dưới là 1 + 5x . câu cuối cũng sai hằng đẳng thức, phải là +16x chứ hông phỉa -16x.~

a) 2x + 5 = 20 - 3x

<=> 2x + 3x = 20 + 5

<=> 5x = 25

<=> x = 5

Vậy x = 5 là nghiệm phương trình.

b) 4x2 + 5x = 0

<=> x( 4x + 5 ) = 0

<=> \(\orbr{\begin{cases}x=0\\4x+5=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x=0\\x=-\frac{5}{4}\end{cases}}}\)

Vậy S = { 0; -5/4 }

c) \(\left(x-2\right)^2=1-5x\)

<=> \(x^2-4x+4=1-5x\)

<=> x2 - 4x + 5x - 1 + 4 = 0

<=> x2 + x + 3 = 0

<=> \(x^2+x.2.\frac{1}{2}+\frac{1}{4}+\frac{11}{4}=0\)

<=> \(\left(x^2+x+\frac{1}{4}\right)=-\frac{11}{4}\)

\(\Leftrightarrow\left(x+\frac{1}{2}\right)^2=-\frac{11}{4}\)( vô lí )

Vậy phương trình vô nghiệm.

d) x2 + 5x + 6 = 0

<=> x2 + 2x + 3x + 6 = 0

<=> x( x + 2 ) + 3( x + 2 ) = 0

<=> ( x + 3 )( x + 2 ) = 0

<=> \(\orbr{\begin{cases}x+3=0\\x+2=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x=-3\\x=-2\end{cases}}}\)

Vậy tập nghiệm phương trình S = { -3; -2 }

e) x4 - 5x2 + 4 = 0

<=> x4 - x2 - 4x2 + 4 = 0

<=> x2( x2 - 1 ) - 4( x2 - 1 ) = 0

<=> ( x2 - 1 )( x2 - 4 ) = 0

<=> ( x - 1 )( x + 1 )( x - 2 )( x + 2 ) = 0

<=> \(\orbr{\begin{cases}x-1=0\\x+1=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x=1\\x=-1\end{cases}}}\)

       \(\orbr{\begin{cases}x-2=0\\x+2=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x=2\\x=-2\end{cases}}}\)

Vậy tập nghiệm phương trình S = { 1; -1; 2; -2 }

f) 5( x- 3x ) = ( 4x + 2 )2 + 1

<=> 5x2 - 15x = 16x2 + 16x + 4 + 1

<=> 5x2 - 16x2 - 15x - 16x - 4 - 1 = 0

<=> -11x2 - 31x - 5 = 0

<=> -( 11x2 + 31x + 5 ) = 0

Ta có:( 11x2 + 31x + 5 ) > 0 V x 

=> -( 11x2 + 31x + 5 ) < 0 V x 

=> -( 11x2 + 31x + 5 ) = 0 ( vô lí )

Vậy phương trình vô nghiệm. 

a, \(2x+5=20-3x\)

\(2x+5-20+3x=0\)

\(5x-15=0\Leftrightarrow5x=15\Leftrightarrow x=3\)

b, \(4x^2+5x=0\)

\(x\left(4x+5\right)=0\)

\(x=0\)

\(4x+5=0\Leftrightarrow4x=-5\Leftrightarrow x=-\frac{5}{4}\)

c, \(\left(x-2\right)^2=1-5x\)

\(\left(x-2\right)=\pm\sqrt{1-5x}\)

 \(x-2=\sqrt{1+5x}\)

\(x^2-4x+4=1+5x\)

\(x^2-4x+4-1-5x=0\)

\(x^2-9x+3=0\)

\(\Delta=b^2-4ac=\left(-9\right)^2-4.3.1=81-12=69>0\)

Nên pt có 2 nghiệm phân biệt 

\(x_1=\frac{9-\sqrt{69}}{2.1}=\frac{9-\sqrt{69}}{2}\)

\(x_2=\frac{9+\sqrt{69}}{2.1}=\frac{9+\sqrt{69}}{2}\)

1 tháng 9 2018

a) ta có : \(\left(x^2-5x\right)^2+10\left(x^2-5x\right)+24=0\)

\(\Leftrightarrow\left(x^2-5x\right)^2+4\left(x^2-5x\right)+6\left(x^2-5x\right)+24=0\)

\(\Leftrightarrow\left(x^2-5x\right)\left(x^2-5x+4\right)+6\left(x^2-5x+4\right)=0\)

\(\Leftrightarrow\left(x^2-5x+6\right)\left(x^2-5x+4\right)=0\)

\(\Leftrightarrow\left(x^2-2x-3x+6\right)\left(x^2-x-4x+4\right)=0\)

\(\Leftrightarrow\left(x\left(x-2\right)-3\left(x+2\right)\right)\left(x\left(x-1\right)-4\left(x-1\right)\right)=0\)

\(\Leftrightarrow\left(x-3\right)\left(x-2\right)\left(x-1\right)\left(x-4\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x-1=0\\x-2=0\\x-3=0\\x-4=0\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}x=1\\x=2\\x=3\\x=4\end{matrix}\right.\) vậy \(x=1;x=2;x=3;x=4\)

b) ta có : \(\left(x^2+x+1\right)\left(x^2+x+2\right)=12\)

\(\Leftrightarrow\left(x^2+x+1\right)^2+\left(x^2+x+1\right)-12=0\)

\(\Leftrightarrow\left(x^2+x+1\right)^2+4\left(x^2+x+1\right)-3\left(x^2+x+1\right)-12=0\)

\(\Leftrightarrow\left(x^2+x+1\right)\left(x^2+x+1+4\right)-3\left(x^2+x+1+4\right)=0\)

\(\Leftrightarrow\left(x^2+x+5\right)\left(x^2+x+1-3\right)=0\)

ta có : \(x^2+x+5>0\forall x\)

\(\Rightarrow pt\Leftrightarrow x^2+x-2=0\Leftrightarrow x^2-x+2x-2=0\)

\(\Leftrightarrow x\left(x-1\right)+2\left(x-1\right)=0\Leftrightarrow\left(x-1\right)\left(x+2\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x-1=0\\x+2=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=1\\x=-2\end{matrix}\right.\) vậy \(x=1;x=-2\)

14 tháng 5 2019

casio fx 570vn

a: \(\Leftrightarrow x^2\left(x^2+x-12\right)=0\)

\(\Leftrightarrow x^2\left(x+4\right)\left(x-3\right)=0\)

hay \(x\in\left\{0;-4;3\right\}\)

d: \(\left(x^2+5x\right)^2-2\left(x^2+5x\right)-24=0\)

\(\Leftrightarrow\left(x^2+5x-6\right)\left(x^2+5x+4\right)=0\)

\(\Leftrightarrow\left(x+6\right)\left(x-1\right)\left(x+1\right)\left(x+4\right)=0\)

hay \(x\in\left\{-6;1;-1;-4\right\}\)

f: \(x\left(x+1\right)\left(x-1\right)\left(x+2\right)=24\)

\(\Leftrightarrow\left(x^2+x\right)\left(x^2+x-2\right)=24\)

\(\Leftrightarrow\left(x^2+x\right)^2-2\left(x^2+x\right)-24=0\)

\(\Leftrightarrow x^2+x-6=0\)

\(\Leftrightarrow\left(x+3\right)\left(x-2\right)=0\)

hay \(x\in\left\{-3;2\right\}\)

3 tháng 4 2020

a) 4         b) 0,6 hoặc 1,75     e) -3,5 hoặc -3

26 tháng 2 2022

hic, mk chx học

10 tháng 3 2019

a/ Đặt (x^2 - 5x) = a thì ta có

a^2 + 10a + 24 = 0

<=> (a + 4)(a + 6) = 0

Làm nốt

10 tháng 3 2019

b/ (x - 4)(x - 5)(x - 6)(x - 7) = 1680

<=> (x - 4)(x - 7)(x - 5)(x - 6) = 1680

<=> (x^2 - 11x + 28)(x^2 - 11x + 30) = 1680

Đặt x^2 - 11x + 28 = a thì ta có

a(a + 2) = 1680

<=> (a - 40)(a + 42) = 0

Làm nốt