\(x\left(2x-9\right)=3x\left(x-5\right)\)

b) <...">

K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

1: =>2x-5=4 hoặc 2x-5=-4

=>2x=9 hoặc 2x=1

=>x=9/2hoặc x=1/2

2: \(\Leftrightarrow\left|2x+1\right|=\dfrac{3}{4}-\dfrac{7}{8}=\dfrac{-1}{8}\)(vô lý)

3: \(\Leftrightarrow\left|5x-3\right|=x+5\)

\(\Leftrightarrow\left\{{}\begin{matrix}x>=-5\\\left(5x-3-x-5\right)\left(5x-3+x+5\right)=0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x>=-5\\\left(4x-8\right)\left(6x+2\right)=0\end{matrix}\right.\Leftrightarrow x\in\left\{2;-\dfrac{1}{3}\right\}\)

20 tháng 1 2019

a, \(6x^2-5x+3=2x-3x\left(3-2x\right)\)

\(6x^2-5x+3=2x-9x+6x^2\)

\(6x^2-5x+3-6x^2+9x-2x=0\)

\(2x+3=0\)

\(2x=-3\)

\(x=-\dfrac{3}{2}\)

20 tháng 1 2019

b, \(\dfrac{2\left(x-4\right)}{4}-\dfrac{3+2x}{10}=x+\dfrac{1-x}{5}\)

\(\dfrac{20\left(x-4\right)}{4.10}-\dfrac{4\left(3+2x\right)}{4.10}=\dfrac{5x}{5}+\dfrac{1-x}{5}\)

\(\dfrac{20x-80}{40}-\dfrac{12+8x}{40}=\dfrac{5x+1-x}{5}\)

\(\dfrac{20x-80-12-8x}{40}=\dfrac{4x+1}{5}\)

\(\dfrac{12x-92}{40}-\dfrac{4x+1}{5}=0\)

\(\dfrac{12x-92}{40}-\dfrac{8\left(4x+1\right)}{40}=0\)

\(12x-92-8\left(4x+1\right)=0\)

⇔ 12x - 92 - 32x - 8 = 0

⇔ -100 - 20x = 0

⇔ 20x = -100

⇔ x = -100 : 20

⇔ x = -5

22 tháng 4 2017

a) 1x13x2x31=2xx2+x+11x−1−3x2x3−1=2xx2+x+1

Ta có: x31=(x1)(x2+x+1)x3−1=(x−1)(x2+x+1)

=(x1)[(x+12)2+34]=(x−1)[(x+12)2+34] cho nên x3 – 1 ≠ 0 khi x – 1 ≠ 0⇔ x ≠ 1

Vậy ĐKXĐ: x ≠ 1

Khử mẫu ta được:

x2+x+13x2=2x(x1)2x2+x+1=2x22xx2+x+1−3x2=2x(x−1)⇔−2x2+x+1=2x2−2x

4x23x1=0⇔4x2−3x−1=0

4x(x1

https://i.imgur.com/u6zkAVa.jpg
14 tháng 2 2020

Bài 3:

a) \(\left(x-6\right).\left(2x-5\right).\left(3x+9\right)=0\)

\(\Leftrightarrow\left(x-6\right).\left(2x-5\right).3.\left(x+3\right)=0\)

\(3\ne0.\)

\(\Leftrightarrow\left[{}\begin{matrix}x-6=0\\2x-5=0\\x+3=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=6\\2x=5\\x=-3\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=6\\x=\frac{5}{2}\\x=-3\end{matrix}\right.\)

Vậy phương trình có tập hợp nghiệm là: \(S=\left\{6;\frac{5}{2};-3\right\}.\)

b) \(2x.\left(x-3\right)+5.\left(x-3\right)=0\)

\(\Leftrightarrow\left(x-3\right).\left(2x+5\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x-3=0\\2x+5=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=3\\2x=-5\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=3\\x=-\frac{5}{2}\end{matrix}\right.\)

Vậy phương trình có tập hợp nghiệm là: \(S=\left\{3;-\frac{5}{2}\right\}.\)

c) \(\left(x^2-4\right)-\left(x-2\right).\left(3-2x\right)=0\)

\(\Leftrightarrow\left(x^2-2^2\right)-\left(x-2\right).\left(3-2x\right)=0\)

\(\Leftrightarrow\left(x-2\right).\left(x+2\right)-\left(x-2\right).\left(3-2x\right)=0\)

\(\Leftrightarrow\left(x-2\right).\left(x+2-3+2x\right)=0\)

\(\Leftrightarrow\left(x-2\right).\left(3x-1\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x-2=0\\3x-1=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=2\\3x=1\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=2\\x=\frac{1}{3}\end{matrix}\right.\)

Vậy phương trình có tập hợp nghiệm là: \(S=\left\{2;\frac{1}{3}\right\}.\)

Chúc bạn học tốt!

a: \(\Leftrightarrow x^3-3x^2+3x-1-x^3+2x^2-x=5x\left(2-x\right)-11\left(x+2\right)\)

=>-x^2+2x-1=10x-5x^2-11x-22

=>-x^2+2x-1=-5x^2-x-22

=>4x^2+3x+21=0

=>PTVN

b: \(\Leftrightarrow\left(x+10\right)\left(x+4\right)+3\left(x+4\right)\left(x-2\right)=4\left(x+10\right)\left(x-2\right)\)

=>x^2+14x+40+3(x^2+2x-8)=4(x^2+8x-20)

=>x^2+14x+40+3x^2+6x-24=4x^2+32x-80

=>20x+16=32x-80

=>-12x=-96

=>x=8

c: \(\Leftrightarrow6\left(x-3\right)+7\left(x-5\right)=13x+4\)

=>6x-18+7x-35=13x+4

=>-53=4(loại)

d: =>3(2x-1)-5(x-2)=3(x+7)

=>6x-3-5x+10=3x+21

=>3x+21=x+7

=>x=-7

e: =>x^3-6x^2+12x-8-x^3-3x^2-3x-1=-9x^2+1

=>-9x^2+9x-9=-9x^2+1

=>9x=10

=>x=10/9

b: \(\Leftrightarrow\dfrac{7x+10}{x+1}\left(x^2-x-2-2x^2+3x+5\right)=0\)

\(\Leftrightarrow\left(7x+10\right)\left(-x^2+2x+3\right)=0\)

\(\Leftrightarrow\left(7x+10\right)\left(x^2-2x-3\right)=0\)

=>(7x+10)(x-3)=0

hay \(x\in\left\{-\dfrac{10}{7};3\right\}\)

d: \(\Leftrightarrow\dfrac{13}{2x^2+7x-6x-21}+\dfrac{1}{2x+7}-\dfrac{6}{\left(x-3\right)\left(x+3\right)}=0\)

\(\Leftrightarrow\dfrac{13}{\left(2x+7\right)\left(x-3\right)}+\dfrac{1}{\left(2x+7\right)}-\dfrac{6}{\left(x-3\right)\left(x+3\right)}=0\)

\(\Leftrightarrow26x+91+x^2-9-12x-14=0\)

\(\Leftrightarrow x^2+14x+68=0\)

hay \(x\in\varnothing\)