Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(a,Đk:1\le x\le4\)
Đặt \(y=\sqrt{4-x}+\sqrt{2x-2}\)Ta có: \(y^2=4-x+2x-2+2\sqrt{\left(4-x\right)\left(2x-2\right)}\)
\(\Leftrightarrow x+2+2\sqrt{\left(4-x\right)\left(2x-2\right)}=y^2\Leftrightarrow x+2\sqrt{\left(4-x\right)\left(2x-2\right)}=y^2-2\)
Phương trình trở thành: \(5+y^2-2=4y\)
\(\Leftrightarrow y^2-4y+3=0\)
\(\Leftrightarrow\orbr{\begin{cases}y=1\\y=3\end{cases}}\) ( Vì \(a+b+c=0\))
- \(y=1.\) Ta có: \(\sqrt{4-x}+\sqrt{2x-2}=1\Leftrightarrow\sqrt{2x-2}=1-\sqrt{4-x}\)
\(\Leftrightarrow\hept{\begin{cases}1-\sqrt{4-x}\ge0\\2x-2=\left(1-\sqrt{4-x}\right)^2\end{cases}}\) \(\Leftrightarrow\hept{\begin{cases}\sqrt{4-x}\le1\\2x-2=1-2\sqrt{4-x}+4-x\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}0\le4-x\le1\\2\sqrt{4-x}=7-3x\end{cases}}\) \(\Leftrightarrow\hept{\begin{cases}3\le x\le4;7-3x\ge0\\4\left(4-x\right)=\left(7-3x\right)^2\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}x\in\varnothing\\4\left(4-x\right)=\left(7-3x\right)^2\end{cases}}\) \(\Leftrightarrow x\in\varnothing\)
- \(y=3\)Ta có: \(\sqrt{4-x}+\sqrt{2x-2}=3\Leftrightarrow\sqrt{2x-2}=3-\sqrt{4-x}\)
\(\Leftrightarrow\hept{\begin{cases}3-\sqrt{4-x}\ge0\\2x-2=\left(3-\sqrt{4-x}\right)^2\end{cases}}\)\(\Leftrightarrow\hept{\begin{cases}\sqrt{4-x}\le3\\2x-2=9-6\sqrt{4-x}+4-x\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}\sqrt{4-x}\le3\\2\sqrt{4-x}=5-x\end{cases}}\) \(\Leftrightarrow\hept{\begin{cases}0\le4-x\le9;5-x\ge0\\4\left(4-x\right)=\left(5-x\right)^2\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}-5\le x\le4\\x^2-6x+9=0\end{cases}}\) \(\Leftrightarrow\hept{\begin{cases}-5\le x\le4\\\left(x-3\right)^2=0\end{cases}}\Leftrightarrow x=3\)
Vậy pt có nghiệm duy nhất là \(x=3\)
(Làm xong hoa mắt :((
a,Bạn xét 3 th
th1: x>=-1
th2: 1>x>-1
th3:x<=1
rồi trong từng th bạn bỏ dấu gttd và giải
b, \(\frac{x^2}{3}+\frac{48}{x^2}=10\left(\frac{x}{3}-\frac{4}{x}\right)\)
tương đương \(x^2+\frac{144}{x^2}=10\left(x-\frac{12}{x}\right)\)(nhân cả 2 vế với 3)
tương đương \(\left(x-\frac{12}{x}\right)^2+24-10\left(x-\frac{12}{x}\right)\)=0
đặt (x-12/x)=a
khi đó a^2-10a+24=0
giải a rồi tìm x thôi
c, đặt \(\sqrt[3]{x}\)=a
khi đó ta có 2a^2-5a=3
giải a rồi tìm x thôi
Chúc bạn học tốt!
Bài 1:
ĐK:...........
PT\((1)\Rightarrow x+y+2\sqrt{(x+y)(x-y)}+x-y=16\) (bình phương 2 vế)
\(\Leftrightarrow x+\sqrt{x^2-y^2}=8\)
\(\Leftrightarrow \sqrt{x^2-y^2}=8-x\Rightarrow \left\{\begin{matrix} 8-x\geq 0\\ x^2-y^2=(8-x)^2=x^2-16x+64\end{matrix}\right.\)
\(\Rightarrow \left\{\begin{matrix} x\leq 8\\ y^2=16x-64\end{matrix}\right.\)
Thay vào PT(2) ta có:
\(x^2+16x-64=128\)
\(\Leftrightarrow x^2+16x-192=0\Rightarrow \left[\begin{matrix} x=8\\ x=-24\end{matrix}\right.\)
Nếu \(x=8\Rightarrow y^2=16x-64=64\Rightarrow y=\pm 8\) (thỏa mãn)
Nếu $x=-24\Rightarrow y^2=16x-64< 0$ (vô lý-loại)
Vậy $(x,y)=(8,\pm 8)$
Bài 2:
Ta thấy:
\(x^2-4x+11=(x^2-4x+4)+7=(x-2)^2+7\geq 0, \forall x\)
\(x^4-8x^2+21=(x^4-8x^2+16)+5=(x^2-4)^2+5\geq 5, \forall x\)
Do đó:
\((x^2-4x+11)(x^4-8x^2+21)\geq 7.5=35\)
Dấu "=" xảy ra khi \((x-2)^2=(x^2-4)^2=0\Leftrightarrow x=2\)
Vậy.......
\(a,\left(x^2-4x+11\right)\left(x^4-8x^2+21\right)=35\)
Phương trình trên tương đương với:
\(\left[\left(x-2\right)^2+7\right]\left[\left(x^2-4\right)^2+5\right]=35\left(1\right)\)
Do: \(\hept{\begin{cases}\left(x-2\right)^2+7\ge7\forall x\\\left(x^2-4\right)^2+5\ge5\forall x\end{cases}}\Rightarrow\left[\left(x+2\right)^2+7\right]\left[\left(x^2+4\right)^2+5\right]\ge35\forall x\)
Nên: \(\left(1\right)\Leftrightarrow\hept{\begin{cases}\left(x-2\right)^2+7=7\\\left(x^2-4\right)^2+5=5\end{cases}\Leftrightarrow}x=2\)
Vậy ..................................
\(b,\sqrt{x}+\sqrt{1-x}+\sqrt{x\left(1-x\right)}=1\)
\(Đkxđ:0\le x\le1\) Đặt: \(0< a=\sqrt{x}+\sqrt{1-x}\Rightarrow\frac{a^2-1}{2}=\sqrt{x\left(1-x\right)}\)
\(+)\) Phương trình mới là: \(a+\frac{a^2-1}{2}=1\Leftrightarrow a^2+2a-3=0\Leftrightarrow\left(a-1\right)\left(a+3\right)=0\)
\(\Leftrightarrow a=\left\{-3;1\right\}\Rightarrow a=1>0\)
\(\sqrt{x}+\sqrt{1-x}=1\)
\(+)\) Nếu \(a=1\Leftrightarrow x+1-x+2\sqrt{x\left(1-x\right)}=1\Leftrightarrow\sqrt{x\left(1-x\right)}=0\)
\(\Rightarrow x=\left\{0;1\right\}\left(tm\right)\)
Vậy .............................